下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省忻州市化树塔联校2021-2022学年高一数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B等于() A. (0,+∞) B. {0,1} C. {1,2} D. {(0,1),(1,2)}参考答案:A考点: 交集及其运算.专题: 计算题.分析: 根据一次函数的值域求出A,根据指数函数的值域求出B,再利用两个集合的交集的定义求出A∩B.解答: 解:∵集合A={y|y=x+1,x∈R}=R=(﹣∞,+∞),B={y|y=2x,x∈R}={y|y>0}=(0,+∞),故A∩B=(﹣∞,+∞)∩(0,+∞)=(0,+∞),故选A.点评: 本题主要考查一次函数、指数函数的值域,两个集合的交集的定义和求法,属于基础题.2.已知幂函数的图像过点,则其解析式是
(
)A.
B.
C.
D.参考答案:B3.直线l1:(﹣1)x+y﹣2=0与直线l2:(+1)x﹣y﹣3=0的位置关系是()A.平行B.相交C.垂直D.重合参考答案:C4.已知sin(a+)=,则cos(2a﹣)的值是()A. B. C.﹣ D.﹣参考答案:D【考点】运用诱导公式化简求值.【分析】把已知条件根据诱导公式化简,然后把所求的式子利用二倍角的余弦函数公式化简后代入即可求出值.【解答】解:sin(a+)=sin[﹣(﹣α)]=cos(﹣α)=cos(α﹣)=,则cos(2α﹣)=2﹣1=2×﹣1=﹣故选D【点评】考查学生灵活运用诱导公式及二倍角的余弦函数公式化简求值.5.已知,则(
)A.
B.
C.
D.参考答案:C由诱导公式化简为,即,而,选C.
6.已知某个几何体的三视图如右侧,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(
)A. B. C. D.参考答案:B略7.设a,b∈R,且a>0,函数f(x)=x2+ax+2b,g(x)=ax+b,在[-1,1]上g(x)的最大值为2,则f(2)等于(
).A.4 B.8
C.10
D.16参考答案:B8.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是A. B.(–∞,0] C.[1,+∞) D.R参考答案:A9.
下列判断正确的是(
)A.函数是奇函数;
B.函数是偶函数C.函数是非奇非偶函数
D.函数既是奇函数又是偶函数参考答案:C10.已知实数x,y满足ax<ay(0<a<1),则下列关系式恒成立的是()A.> B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3参考答案:D【考点】指数函数的图象与性质;对数函数的图象与性质.【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足ax<ay(0<a<1),∴x>y,A.若x=1,y=﹣1时,满足x>y,但==,故>不成立.B.若x=1,y=﹣1时,满足x>y,但ln(x2+1)=ln(y2+1)=ln2,故ln(x2+1)>ln(y2+1)不成立.C.当x=π,y=0时,满足x>y,此时sinx=sinπ=0,siny=sin0=0,有sinx>siny,但sinx>siny不成立.D.∵函数y=x3为增函数,故当x>y时,x3>y3,恒成立,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.若存在实数和,使得则实数的所有可能值为
.参考答案:112.给定函数①,②,③,④,其中在区间(0,1)上单调递减的函数序号是
参考答案:略13.已知、是不同的两个平面,直线,命题无公共点;命题,则的
条件。参考答案:必要
从到,过不去,回得来14.函数,则的值为_________.参考答案:15.已知是定义在R上的奇函数,且当x>0时,,则x<0时,f(x)解析式为________________.参考答案:略16.函数是幂函数,且当时是减函数,则函数______________.参考答案:略17.实数满足,则取值范围是
▲.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.
参考答案:(1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.其频率分布直方图如图所示.
(2)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.030+0.025+0.005)×10=0.75.所以,估计这次考试的合格率是75%.利用组中值估算这次考试的平均分,可得:45·f1+55·f2+65·f3+75·f4+85·f5+95·f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.所以估计这次考试的平均分是71分.(3)[40,50)与[90.100]的人数分别是6和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A1,A2,…A6,将[90,100]分数段的3人编号为B1,B2,B3,从中任取两人,则基本事件构成集合Ω={(A1,A2),(A1,A3)…(A1,A6),(A1,B1),(A1,B2),(A1,B3),(A2,A3),(A2,A4),…,(B2,B3)}共有36个,其中,在同一分数段内的事件所含基本事件为(A1,A2),(A1,A3)…(A1,A6),(A2,A3)…(A5,A6),(B1,B2),(B1,B3),(B2,B3)共18个,故概率P==.
19.
已知数列{}的通项公式为.
(1)求证:数列{}是等差数列;
(2)若数列{}是等比数列,且=,=,试求数列{}的通项公式及
前项和.参考答案:(1)因为an+1﹣an=3(n+1)﹣3n=3,a1=3,所以数列{an}是以3为首项,3为公差的等差数列. 4分(2)由(1)可知:b1=a2=3×2=6,b2=a4=3×4=12. 6分所以数列{bn}的公比. 8分所以, 10分所以Sn=3(21+22+…+2n)=3×=6(2n﹣1). 12分20.等差数列{an}的各项均为正数,,{an}的前n项和为Sn,{bn}为等比数列,,且.(1)求an与bn;(2)求数列{anbn}的前n项和Tn.参考答案:(1);(2)试题分析:(1)的公差为,的公比为,利用等比数列的通项公式和等差数列的前项和公式,由列出关于的方程组,解出的值,从而得到与的表达式.(2)根据数列的特点,可用错位相减法求它的前项和,由(1)的结果知,两边同乘以2得由(1)(2)两式两边分别相减,可转化为等比数列的求和问题解决.试题解析:(1)设的公差为,的公比为,则为正整数,,依题意有,即,解得或者(舍去),故。4分(2)。6分,,两式相减得8分,所以12分考点:1、等差数列和等比数列;2、错位相减法求特数列的前项和.21.在中,,,边的高设为,且,根据上述条件求:(1)的值;(2)的面积.参考答案:22.(10分)求以N(1,3)为圆心,并且与直线3x﹣4y﹣7=0相切的圆的方程.参考答案:考点: 直线与圆的位置关系;圆的标准方程.专题: 综合题.分析: 要求圆的方程,已知圆心坐标,关键是要求半径,根据直线与圆相切得到圆心到直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度文化传播公司公司挂靠文化传播合作协议3篇
- 2025年度食堂员工综合培训与服务合同3篇
- 二零二五年度全日制劳务合同书(新能源发电运维)3篇
- 二零二五年度农村土地承包权与农业科技应用合作合同3篇
- 2025年度养羊产业市场调研与分析合作协议2篇
- 二零二五年度劳动合同集合与劳动争议预防合同3篇
- 二零二五年度卫浴行业绿色环保产品认证合同3篇
- 2025年度光伏电站设备维修保养合同3篇
- 2025年度员工合同模板汇编:员工培训与发展计划篇2篇
- 2025年度新能源汽车充电桩合作股权协议书模板3篇
- 2024-2030年全球与中国汽车音频DSP芯片组市场销售前景及竞争策略分析报告
- 2025礼品定制合同范本
- 医院消毒隔离制度范文(2篇)
- 2024年01月11026经济学(本)期末试题答案
- 烘干煤泥合同范例
- 2025年“三基”培训计划
- 第20课 北洋军阀统治时期的政治、经济与文化 教案
- 住房公积金稽核审计工作方案例文(4篇)
- 山东省青岛实验高中2025届高三物理第一学期期末综合测试试题含解析
- 物理人教版2024版八年级上册6.2密度课件03
- 2024-2030年中国光纤传感器行业竞争格局及发展趋势分析报告
评论
0/150
提交评论