山西省太原市北郊中学高二数学文下学期期末试卷含解析_第1页
山西省太原市北郊中学高二数学文下学期期末试卷含解析_第2页
山西省太原市北郊中学高二数学文下学期期末试卷含解析_第3页
山西省太原市北郊中学高二数学文下学期期末试卷含解析_第4页
山西省太原市北郊中学高二数学文下学期期末试卷含解析_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省太原市北郊中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(?RP)∩Q=()A.[0,1) B.(0,2] C.(1,2) D.[1,2]参考答案:C【分析】先化简集合A,再求,进而求.【详解】x(x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞)由题意得,=(0,2),∴,故选C.【点睛】本题考查的是有关集合的运算的问题,在解题的过程中,要先化简集合,明确集合的运算法则,进而求得结果.2.(

)A. B. C. D.参考答案:C【分析】由题意结合复数的运算法则计算其值即可.【详解】由复数的运算法则有:.故选:C.【点睛】本题主要考查复数的除法运算,复数的乘法运算等知识,意在考查学生的转化能力和计算求解能力.3.已知抛物线,过其焦点且斜率为1的直线交抛物线与、两点,若线段的中点的纵坐标为2,则该抛物线的准线方程为(

(A)

(B)

(C)

(D)参考答案:B略4.若f′(x0)=﹣3,则=()A.﹣3 B.﹣6 C.﹣9 D.﹣12参考答案:B【考点】6F:极限及其运算.【分析】把要求解极限的代数式变形,化为若f′(x0)得答案.【解答】解:∵f′(x0)=﹣3,则===2f′(x0)=﹣6.故选;B.5.如果函数y=f(x)的图象如下图,那么导函数的图象可能是()A. B. C. D.参考答案:A试题分析:单调变化情况为先增后减、再增再减因此的符号变化情况为大于零、小于零、大于零、小于零,四个选项只有A符合,故选A.考点:1、函数的单调性与导数的关系;2、函数图象的应用.【方法点晴】本题通过对多个图象的选择考查函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.6.全称命题“所有被5整除的整数都是奇数”的否定是(

) A.所有被5整除的整数都不是奇数

B.所有奇数都不能被5整除 C.存在一个奇数,不能被5整除

D.存在一个被5整除的整数不是奇数参考答案:D略7.若复数(b∈R)的实部与虚部互为相反数,则b=()A. B. C. D.2参考答案:C【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】化简复数为+,由题意可得=﹣,由此解得b的值.【解答】解:∵复数===+.由题意可得=﹣,解得b=﹣.故选C.8.如果命题“¬(p∨q)”为假命题,则()A.p,q均为真命题 B.p,q中至少有一个为真命题C.p,q均为假命题 D.p,q中至多有一个为真命题参考答案:B【考点】2E:复合命题的真假.【分析】命题“¬(p∨q)”为假命题,可得命题p∨q为真命题,进而得出结论.【解答】解:∵命题“¬(p∨q)”为假命题,∴命题p∨q为真命题,∴p,q中至少有一个为真命题.故选:B.9.给出以下四个说法:①残差点分布的带状区域的宽度越窄相关指数越小②在刻画回归模型的拟合效果时,相关指数R2的值越大,说明拟合的效果越好;③在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.2个单位;④对分类变量X与Y,若它们的随机变量K2的观测值k越小,则判断“X与Y有关系”的把握程度越大.其中正确的说法是A.①④ B.②④ C.①③ D.②③参考答案:D【分析】根据残差点分布和相关指数的关系判断①是否正确,根据相关指数判断②是否正确,根据回归直线的知识判断③是否正确,根据联表独立性检验的知识判断④是否正确.【详解】残差点分布宽度越窄,相关指数越大,故①错误.相关指数越大,拟合效果越好,故②正确.回归直线方程斜率为故解释变量每增加一个单位时,预报变量平均增加个单位,即③正确.越大,有把握程度越大,故④错误.故正确的是②③,故选D.【点睛】本小题主要考查残差分析、相关指数、回归直线方程和独立性检验等知识,属于基础题.10.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是(

)A.

y与x具有正的线性相关关系

B.回归直线过样本点的中心(,)C.

若该大学某女生身高增加1cm,则其体重约增加0.85kgD.

若该大学某女生身高为170cm,则可断定其体重为58.79kg参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.若等边三角ABC边长为2,点P为线段AB上一点,且,则最小值是

,最大值是 .参考答案:

12.已知等边三角形ABC的高为,它的内切圆半径为,则,由此类比得:已知正四面体的高为H,它的内切球半径为,则

.参考答案:1:4略13..已知函数,则从小到大的顺序为。参考答案:<<略14.已知椭圆:+=1,左右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为.参考答案:【考点】椭圆的简单性质.【专题】综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.【分析】|AF2|+|BF2|=4a﹣|AB|=8﹣|AB|,根据|AF2|+|BF2|的最大值为5,可得|AB|的最小值为3.由题意可设直线l的方程为:my=x+c,(直线l的斜率为0不必考虑),A(x1,y1),B(x2,y2).与椭圆方程联立可得:(b2m2+4)y2﹣2mcb2y+b2c2﹣4b2=0,再利用根与系数的关系、弦长公式即可得出.【解答】解:|AF2|+|BF2|=4a﹣|AB|=8﹣|AB|,∵|AF2|+|BF2|的最大值为5,∴|AB|的最小值为3.由题意可设直线l的方程为:my=x+c,(直线l的斜率为0不必考虑),A(x1,y1),B(x2,y2).联立,化为:(b2m2+4)y2﹣2mcb2y+b2c2﹣4b2=0,c2=4﹣b2.∴y1+y2=,y1y2=.∴|AB|===,当m=0时,|AB|=b2;当m≠0时,|AB|=4+>b2.∴b2=3.∴椭圆的标准方程为:,故答案为:.【点评】本题考查了椭圆与圆的定义标准方程及其性质、弦长公式,考查了数形结合方法、推理能力与计算能力,属于中档题.15.已知集合A={x|x2—16<0

},集合B={x|x2—4x+3

>0},则A∩B=___________。参考答案:{x|-4<x<1或3<x<4}16.如图给出了一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i行第j列的数为aij(i≥j,i,j∈N*),则a88=.参考答案:【考点】F1:归纳推理.【分析】察这个“直角三角形数阵”,能够发现ai1=a11+(i﹣1)×=,再由从第三行起,每一行的数成等比数列,可求出aij(i≥j),即可得出结论.【解答】解:ai1=a11+(i﹣1)×=,aij=ai1×()j﹣1=×()j﹣1=i×()j+1.∴a88=8×()9=故答案为:.17.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于 cm3.参考答案:20详解:由题中所给的三视图可知,几何体是一个直三棱柱截取一个三棱锥,棱柱和棱锥的底面面积,棱柱和棱锥的高h=5cm,故该几何体的体积为,故答案是20.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)已知多项式,用秦九韶算法计算当时的值;(2)若,,求的最小值。参考答案:解:(Ⅰ),,,,,所以利用秦九韶算法得到时值为15170.(Ⅱ)由(Ⅰ)知,所以,=

。所以最小值为。19.已知的展开式前三项中的系数成等差数列.(1)求n的值和展开式系数的和;(2)求展开式中所有x的有理项.参考答案:(1);(2),,.【分析】(1)展开式的通项公式为,则前3项的系数分别为1,,,成等差,即可列式求解。(2)由(1)知,则,对r赋值,即可求出所有的有理项。【详解】(1)根据题意,()n的展开式的通项为Tr+1=?nr()n﹣r()r,其系数为?nr,则前3项的系数分别为1,,,成等差,∴,解可得:或,又由,则,在中,令可得:。(2)由(1)的结论,,则的展开式的通项为,当时,有,当时,有,当时,有;则展开式中所有的有理项为.【点睛】本题主要考查二项式定理的应用,通项公式,求展开式中某项的系数,熟练掌握展开式的通项公式是解题的关键,属基础题。20.如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,PE=2BE.(I)求证:平面EAC⊥平面PBC;(Ⅱ)若二面角P﹣AC﹣E的余弦值为,求直线PA与平面EAC所成角的正弦值.参考答案:【考点】MT:二面角的平面角及求法;LY:平面与平面垂直的判定.【分析】(I)由PC⊥底面ABCD,可得PC⊥AC.由AB=2,AD=CD=1,利用勾股定理的逆定理可得:AC⊥BC,因此AC⊥平面PBC,即可证明平面EAC⊥平面PBC.(II)取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得设P(0,0,a)(a>0),可取=(1,﹣1,0),利用向量垂直与数量积的关系可得:为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,可得,由于二面角P﹣AC﹣E的余弦值为,可得==,解得a=4.设直线PA与平面EAC所成角为θ,则sinθ=||=即可得出.【解答】(I)证明:∵PC⊥底面ABCD,AC?平面ABCD,∴PC⊥AC.∵AB=2,AD=CD=1,∴AC=BC=,∴AC2+BC2=AB2,∴AC⊥BC,又BC∩PC=C,∴AC⊥平面PBC,又AC?平面EAC,∴平面EAC⊥平面PBC.(II)解:取AB的中点F,两角CF,则CF⊥AB,以点C为原点,建立空间直角坐标系,可得:C(0,0,0),A(1,1,0),B(1,﹣1,0),设P(0,0,a)(a>0),则E,=(1,1,0),=(0,0,a),=,取=(1,﹣1,0),则=0,∴为平面PAC的法向量.设=(x,y,z)为平面EAC的法向量,则,即,取=(a,﹣a,﹣4),∵二面角P﹣AC﹣E的余弦值为,∴===,解得a=4,∴=(4,﹣4,﹣4),=(1,1,﹣4).设直线PA与平面EAC所成角为θ,则sinθ=||===,∴直线PA与平面EAC所成角的正弦值为.21.定义“矩阵”的一种运算·,该运算的意义为点(x,y)在矩阵的变换下成点.设矩阵A=

(1)已知点在矩阵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论