版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市燕子山矿中学2021-2022学年高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.现有6名同学去旅游,有5个不同的旅游景点供选择,每名同学可自由选择去其中的一个景点,不同选法的种数是(
)A.56
B.65
C.
D.参考答案:A2.设数列{an}是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是A.1
B.2
C.±2
D.4参考答案:B解:设等差数列的前三项为a,a-d,a+d,由题设知,,得,得,又数列{an}是单调递增的等差数列,∴d>0,故a=4,d=2,则它的首项是2.3.如果直线直线,且平面,那么与的位置关系是()A.相交 B. C. D.或参考答案:D试题分析:如果,则或,故选D.考点:空间中线面的位置关系.4.等比数列的前项和为,,若成等差数列,则(
)A.7
B.
8
C.16
D.15参考答案:D5.巳知F1,F2是椭圆(a>b>0)的两焦点,以线段F1F2为边作正三角形PF1F2,若边PF1的中点在椭圆上,则该椭圆的离心率是()A.﹣1 B.+1 C. D.参考答案:A【考点】椭圆的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】设边PF1的中点为Q,连接F2Q,Rt△QF1F2中,算出|QF1|=c且|QF2|=c,根据椭圆的定义得2a=|QF1|+|QF2|=(1+)c,由此不难算出该椭圆的离心率.【解答】解:由题意,设边PF1的中点为Q,连接F2Q在△QF1F2中,∠QF1F2=60°,∠QF2F1=30°Rt△QF1F2中,|F1F2|=2c(椭圆的焦距),∴|QF1|=|F1F2|=c,|QF2|=|F1F2|=c根据椭圆的定义,得2a=|QF1|+|QF2|=(1+)c∴椭圆的离心率为e===﹣1故选:A【点评】本题给出椭圆与以焦距为边的正三角形交于边的中点,求该椭圆的离心率,着重考查了解三角形、椭圆的标准方程和简单性质等知识,属于中档题.6.设,且,则(
)A.
B.
C.
D.参考答案:D略7.把正整数按右图所示的规律排序,则从2013到2015的箭头方向依次为()A.B.
C.
D.参考答案:A略8.设,则“”是“2x2+x-1>0”的A.充分而不必要条件
B.
必要而不充分条件C.充分必要条件
D.
既不充分也不必要条件参考答案:A略9.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()A. B. C. D.参考答案:D【考点】等可能事件的概率.【分析】简化模型,只考虑第999次出现的结果,有两种结果,第999次出现正面朝上只有一种结果,即可求【解答】解:抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,反面朝上,每中结果等可能出现,故所求概率为故选D10.如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为()A.30° B.45° C.60° D.90°参考答案:D【考点】异面直线及其所成的角.【分析】连接B1G,EG,先利用长方形的特点,证明四边形A1B1GE为平行四边形,从而A1E∥B1G,所以∠B1GF即为异面直线A1E与GF所成的角,再在三角形B1GF中,分别计算三边的长度,利用勾股定理即可得此角的大小【解答】解:如图:连接B1G,EG∵E,G分别是DD1,CC1的中点,∴A1B1∥EG,A1B1=EG,∴四边形A1B1GE为平行四边形∴A1E∥B1G,∴∠B1GF即为异面直线A1E与GF所成的角在三角形B1GF中,B1G===FG===B1F===∵B1G2+FG2=B1F2∴∠B1GF=90°∴异面直线A1E与GF所成角为90°故选D【点评】本题考查了空间异面直线所成的角的作法、证法、算法,长方体的性质及其中的数量关系的应用,将空间问题转化为平面问题的思想方法二、填空题:本大题共7小题,每小题4分,共28分11.椭圆7x2+3y2=21上一点到两个焦点的距离之和为.参考答案:2【考点】椭圆的简单性质.【分析】将椭圆方程转化成标准方程,求得a,b的值,由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2.【解答】解:由题意可知:椭圆的标准方程:,焦点在y轴上,a2=7,b2=3,由c2=a2﹣b2=4,c=2,∴由椭圆的定义可知:椭圆上一点到两个焦点的距离之和2a=2,故答案为:2.12.为了了解高三学生的身体状况,抽取了部分男生的体重,将所得的数据整理后,画出了频率分布直方图(如图).已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的男生人数是.参考答案:48【考点】频率分布直方图.【分析】根据前3个小组的频率之比为1:2:3,可设前三组的频率为x,2x,3x,再根据所以矩形的面积和为1建立等量关系,求出x,最后根据样本容量等于频数除以频率求出所求.【解答】解:由题意可设前三组的频率为x,2x,3x,则6x+(0.0375+0.0125)×5=1解可得,x=0.125所以抽取的男生的人数为故答案为:48.13.设为单位向量,非零向量,若的夹角为,则的最大值等于.参考答案:考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:利用数量积运算性质、二次函数的单调性即可得出.解答:解:||===,只考虑x>0,则===,当且仅当=﹣时取等号.∴则的最大值等于.故答案为:.点评:本题考查了数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.14.对任意正整数,定义的双阶乘如下:当为偶数时,;当为奇数时,。现有四个命题:①;②;③个位数为0;④个位数为5。其中正确命题的序号有______________。参考答案:①③④略15.已知某程序框图如图所示,若输入的x值为–1,则输出的值为___________。参考答案:16.已知F是双曲线的右焦点,P为左支上任意一点,点,当△PAF的周长最小时,点P坐标为.参考答案:【考点】KC:双曲线的简单性质.【分析】求出左焦点H的坐标,由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|,求得2a+|AH|的值,即可求出△PAF周长的最小值,同时求出直线AH的方程,联立双曲线的方程,解方程可得P的坐标.【解答】解:∵F是双曲线的右焦点,∴a=1,b=2,c=3,F(3,0),左焦点为H(﹣3,0),由双曲线的定义可得|PF|﹣|PH|=2a=2,(P在左支上),又点,|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=2+=2+15=17,∵|AF|==15,∴当且仅当A,P,H共线时,△PAF周长取得最小值为17+15=32.由直线AH:+=1,代入双曲线,解得x=﹣2,y=2,即有P(﹣2,2),故答案为:(﹣2,2).【点评】本题考查双曲线的定义和双曲线的标准方程,以及双曲线的简单性质的应用,把|PF|+|PA|化为2a+|PH|+|PA|是解题的关键.17.在ΔABC中,若,则
________参考答案:-6三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知正方体,求:(1)异面直线与所成的角;(2)求与平面所成的角;(3)求二面角的大小。参考答案:(1)60度(2)45度(3)45度19.已知函数f(x)=(x﹣a)|x﹣2|,g(x)=2x+x﹣2,其中a∈R.(1)写出f(x)的单调区间(不需要证明);(2)如果对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,求实数a的取值范围.参考答案:【考点】3R:函数恒成立问题;3E:函数单调性的判断与证明.【分析】(1)利用绝对值的定义,去掉绝对值,将函数f(x)转化成分段函数,再对分段函数的每一段研究它的单调性,即可确定f(x)的单调区间;(2)将问题转化为f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,即分别求f(x)在[0,1]上的最大值和g(x)在[0,2]上的最大值.对于g(x)易判断出它的单调性,即可求得g(x)在[0,2]上的最大值;对于f(x),结合(1)的结论,分类讨论即可求得f(x)在[0,1]上的最大值.列出不等式,即可求出实数a的取值范围.【解答】解:(1)∵f(x)=(x﹣a)|x﹣2|,∴,①当a=2时,f(x)的递增区间是(﹣∞,+∞),f(x)无减区间;②当a>2时,f(x)的递增区间是(﹣∞,2),,f(x)的递减区间是;③当a<2时,f(x)的递增区间是,(2,+∞),f(x)的递减区间是.(2)∵对任意实数m∈[0,1],总存在实数n∈[0,2],使得不等式f(m)≤g(n)成立,∴f(x)在[0,1]上的最大值小于等于g(x)在[0,2]上的最大值,当x∈[0,2]时,g(x)=2x+x﹣2单调递增,∴g(x)max=g(2)=4.当x∈[0,1]时,f(x)=﹣(x﹣a)(x﹣2)=﹣x2+(2+a)x﹣2a,①当,即a≤﹣2时,f(x)max=f(0)=﹣2a,∴g(x)max≤f(x)max,即﹣2a≤4,解得a≥﹣2,∴a=﹣2;
②当,即﹣2<a≤0时,f(x)max=,∴g(x)max≤f(x)max,即,解得﹣2≤a≤6,∴﹣2<a≤0;
③当,即a>0时,f(x)max=f(1)=1﹣a,∴g(x)max≤f(x)max,即1﹣a≤4,解得a≥﹣3,∴a>0.综合①②③,实数a的取值范围是[﹣2,+∞).20.(本小题满分10分)如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=,E是PC的中点.(Ⅰ)证明:PA∥平面EDB;(Ⅱ)求异面直线AD与BE所成角的大小.参考答案:(本小题满分10分)如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=,E是PC的中点.(Ⅰ)证明:PA∥平面EDB;(Ⅱ)求异面直线AD与BE所成角的大小.证明:(Ⅰ)连接AC,设AC∩BD=O,连接EO,∵四边形ABCD为矩形,∴O为AC的中点.∴OE为△PAC的中位线.
∴PA∥OE,而OE平面EDB,PA平面EBD,∴PA∥平面EDB.
……………4分(Ⅱ)方法一:∵AD∥BC,∴就是异面直线AD与BE所成的角或补角.………6分
∵PD⊥平面ABCD,BC平面ABCD,∴BC⊥PD.又四边形ABCD为矩形,∴BC⊥DC.又因为PDDC=D,所以BC⊥平面PDC.
在BCE中,BC=,EC=,∴.
即异面直线AD与BE所成角大小为.
……………10分略21.已知x=1是函数f(x)=mx3﹣3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0.(Ⅰ)求m与n的关系表达式;(Ⅱ)求f(x)的单调区间.参考答案:【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(I)由x=1是函数f(x)=mx3﹣3(m+1)x2+nx+1的一个极值点,求导,则f′(1)=0,求得m与n的关系表达式;(II)根据(I),代入f(x)中,求导,令导数f′(x)>0,求得单调增区间,令f′(x)<0,求得单调减区间.【解答】解:(I)f′(x)=3mx2﹣6(m+1)x+n,因为x=1是f(x)的一个极值点,所以f′(1)=0,即3m﹣6(m+1)+n=0,所以n=3m+6.(II)由(I)知,.当m<0时,有,当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年绿植项目规划申请报告
- 甘肃省兰州市市区片2025届高三下第一次测试英语试题含解析
- 2025届茂名市重点中学高考英语必刷试卷含解析
- 2025届上海市浦东新区高桥中学高三第二次诊断性检测英语试卷含解析
- 2025届河南省漯河实验高中高三下学期一模考试数学试题含解析
- 2025届云南省曲靖市麒麟区六中高考数学二模试卷含解析
- 2025届安徽省肥东县圣泉中学高考英语考前最后一卷预测卷含解析
- 安徽省合肥二中2025届高三第五次模拟考试英语试卷含解析
- 宁夏银川二中2025届高考英语三模试卷含解析
- 2025届河北邢台一中高三3月份模拟考试数学试题含解析
- 2024年广东普通专升本《公共英语》完整版真题
- 数据中心储能白皮书
- 化学实验室安全智慧树知到期末考试答案2024年
- 《养老护理员》-课件:协助老年人穿脱简易矫形器
- 浅谈美食类自媒体《日食记》的商业价值和运营策略
- 室内设计大学生职业生涯规划模板
- 客户服务方面的SWOT分析
- 电工职业生涯展示
- 经典房地产营销策划培训(全)
- 儿童视力保护培训课件
- 实验室仪器设备管理操作指南场景版
评论
0/150
提交评论