下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市浑源县第五中学2023年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知log7[log3(log2x)]=0,那么x等于()A. B. C. D.参考答案:D【考点】对数的运算性质.【分析】从外向里一层一层的求出对数的真数,求出x的值,求出值.【解答】解:由条件知,log3(log2x)=1,∴log2x=3,∴x=8,∴x=故选:D.2.若定义在上的偶函数和奇函数满足,则()A
B
C
D
参考答案:D3.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?参考答案:A【考点】程序框图.【专题】算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K
S
是否继续循环循环前1
1/第一圈2
4
是第二圈3
11
是第三圈4
26
是第四圈5
57
否故退出循环的条件应为k>4故答案选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.4.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是(
)A.
B.
C.
D.参考答案:C5.已知点A(-1,2),B(2,-2),C(0,3),若点M(a,b)是线段AB上的一点(a≠0),则直线CM的斜率的取值范围是(
)A.[,1]
B.[,0)∪(0,1]
C.[-1,]
D.(-∞,]∪[1,+∞)参考答案:D6.已知等比数列{an}的公比为q,且,数列{bn}满足,若数列{bn}有连续四项在集合{-28,-19,-13,7,17,23}中,则q=(
)A. B. C. D.参考答案:A【分析】由题可知数列的连续四项,从而可判断,再分别列举满足符合条件的情况,从而得到公比.【详解】因为数列有连续四项在集合中,,所以数列有连续四项在集合中,所以数列的连续四项不同号,即.因为,所以,按此要求在集合中取四个数排成数列,有-27,24,-18,8;-27,24,-12,8;-27,18,-12,8三种情况,因为-27,24,-12,8和-27,24,-18,8不是等比数列,所以数列的连续四项为-27,18,-12,8,所以数列的公比为.【点睛】本题主要考查等比数列的综合应用,意在考查学生的分析能力,逻辑推理能力,分类讨论能力,难度较大.7.对于任意实数a,b,c,d,以下四个命题中①ac2>bc2,则a>b;
②若a>b,c>d,则a+c>b+d;③若a>b,c>d,则ac>bd;
④a>b,则>.其中正确的有()A.1个 B.2个 C.3个 D.4个参考答案:B【考点】R3:不等式的基本性质.【分析】由不等式的性质,逐个选项验证可得.【解答】解:选项①ac2>bc2,则a>b正确,由不等式的性质可得;
选项②若a>b,c>d,则a+c>b+d正确,由不等式的可加性可得;选项③若a>b,c>d,则ac>bd错误,需满足abcd均为正数才可以;
选项④a>b,则>错误,比如﹣1>﹣2,但<.故选:B8.下列函数为偶函数且在上为增函数的是(
)
A.
B.
C.
D.参考答案:B略9.设集合A={xQ|},则()A.
B.
C.
D.参考答案:D10.若函数的定义域为,且,则函数的定义域是(
)A.
B.
C.
D.
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.实数a、b、c满足a2+b2+c2=5.则6ab﹣8bc+7c2的最大值为
.参考答案:45【考点】二维形式的柯西不等式;基本不等式在最值问题中的应用.【专题】转化思想;综合法;不等式.【分析】将a2+b2+c2分拆为a2+(+)b2+(+)c2是解决本题的关键,再运用基本不等式a2+b2≥2ab求最值.【解答】解:因为5=a2+b2+c2=a2+(+)b2+(+)c2=(a2+b2)+(b2+c2)+c2≥|ac|+|bc|+c2≥ac﹣bc+c2=[6ac﹣8bc+7c2],所以,6ac﹣8bc+7c2≤9×5=45,即6ac﹣8bc+7c2的最大值为45,当且仅当:a2=b2,b2=c2,解得,a2=,b2=,c2=,且它们的符号分别为:a>0,b>0,c<0或a<0,b<0,c>0.故答案为:45.【点评】本题主要考查了基本不等式在求最值问题中的应用,以及基本不等式取等条件的确定,充分考查了等价转化思想与合理分拆的运算技巧,属于难题.12.函数y=﹣lg(x+1)的定义域为.参考答案:{x|x≥1}【考点】函数的定义域及其求法.【分析】根据二次根式的性质结合对数函数的性质得不等式组,解出即可.【解答】解:由题意得:,解得:x≥1,故答案为:{x|x≥1}.13.已知集合,,若,则实数的取值范围是
参考答案:14.科学家以里氏震级来度量地震的强度,若设I为地震时的相对能量程度,则里氏震级量度(r)可定义为r=lgI。2008年四川省汶川地区发生里氏8.0级地震,同1976年的唐山大地震(里氏7.8级)比较,汶川地震的相对能量程度是唐山大地震的
倍。参考答案:15.已知函数,分别由下表给出:123211
123321则当时,___________.参考答案:3由表格可知:.∵,∴.由表格知,故.16.已知函数,则.参考答案:17.锐角△ABC的三边a,b,c和面积S满足条件,且角C既不是△ABC的最大角也不是△ABC的最小角,则实数k的取值范围是________.参考答案:【分析】根据余弦定理和面积公式可得,得,结合范围确定结果.【详解】,,又,,,锐角三角形不是最大角、也不是最小角,则,,,故荅案为.【点睛】本题主要考查余弦定理和三角形面积公式的应用,属于基础题.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设向量.(I)若,求的值;(II)设函数,求的最大值及的单调递增区间.参考答案:19.已知函数,。(Ⅰ)求的值;(Ⅱ)若,,求。参考答案:解:(Ⅰ);(Ⅱ)
因为,,所以,所以,所以.略20.已知奇函数是定义在上的减函数,不等式,设不等式解集为,集合,求函数的最大值参考答案:因为为奇函数所以又因为为减函数,则有解得集合所以,则略21.如图,直三棱柱中,、分别是棱、的中点,点在棱上,已知,,.(1)求证:平面;(2)设点在棱上,当为何值时,平面平面?参考答案:解:(1)连接交于,连接.
因为CE,AD为△ABC中线,所以O为△ABC的重心,.从而OF//C1E.………………3分OF面ADF,平面,所以平面.…………6分(2)当BM=1时,平面平面.
在直三棱柱中,由于平面ABC,BB1平面B1BCC1,所以平面B1BCC1平面ABC.
由于AB=AC,是中点,所以.又平面B1BCC1∩平面ABC=BC,
所以AD平面B1BCC1.
而CM平面B1BCC1,于是ADCM.…9分因为BM=CD=1,BC=CF=2,所以≌,所以CMDF.…11分
DF与AD相交,所以CM平面.CM平面CAM,所以平面平面.………13分当BM=1时,平面平面.…………………14分22.已知(Ⅰ)证明函数f(x)的图象关于轴对称;(Ⅱ)判断在上的单调性,并用定义加以证明;(Ⅲ)当x∈[1,2]时函数f(x)的最大值为,求此时a的值.
(Ⅳ)当x∈[-2,-1]时函数f(x)的最大值为,求此时a的值.
参考答案:(Ⅰ)要证明函数f(x)的图象关于轴对称则只须证明函数f(x)是偶函数…∵x∈R由
∴函数f(x)是偶函数,即函数f(x)的图象关于轴对称(Ⅱ)证明:设,则=(1)当a>1时,由0<,则x1+x2>0,则、、、;<0即;(2)当0<a<1时,由0<,则x1+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《创新的概念与过程》课件
- 《环境科学知识讲座》课件
- 搅拌站设备承包安装合同书范本(2篇)
- 2025年广西从业资格证货运考试试题答案
- 2024年甲乙丙物流服务合同
- 2025年濮阳驾校考试货运从业资格证考试
- 2025年银川如何考货运从业资格证
- 2025年长沙下载货运从业资格证模拟考试题
- 2024年度城市出租车运营权租赁合同书3篇
- 2025年昭通货运上岗证考试题答案
- 第五单元观察物体(一) (单元测试)-2024-2025学年二年级上册数学 人教版
- 【初中生物】脊椎动物(鱼)课件-2024-2025学年人教版(2024)生物七年级上册
- 聘请专家的协议书(2篇)
- 办公环境家具成品保护方案
- 《新的实验》教学课件1
- 2024年湖北省武汉市中考英语真题(含解析)
- 工业机器人技术应用基础学习通超星期末考试答案章节答案2024年
- 《4.3用一元一次方程解决问题》教学设计
- 诺如病毒课件教学课件
- 收二手贵重物品协议书范文
- 人教版七年级生物上册第二单元第一章第二节种子植物课件
评论
0/150
提交评论