下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省大同市启点中学2022年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知过点,直线与直线平行,则m的值为(
)A.0 B.2 C.-8 D.10参考答案:B根据条件知道过点A(-2,m)和B(m,4)的直线斜率和已知直线的斜率之积为-1,故。故答案为:D。2.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,把得到的点数之和是几就选几班,这种选法()A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大参考答案:D【考点】概率的意义.【分析】分别求出每个班被选到的概率,对选项中的说法进行判断,即可得出正确的结论.【解答】解:P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选:D.【点评】本题考查了概率的应用问题,解题时应对选项中的说法进行分析判断,以便得出正确的答案,是基础题.3.函数的一个单调递增区间是(
) A.
B.
C.
D.参考答案:A4.直线1在轴上的截距是
(
)A.
B.
C.
D.参考答案:B5.已知抛物线的顶点为,抛物线上两点满足,则点到直线的最大距离为
A.1 B.2
C.3
D.4参考答案:D6.由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有(
)
A.72
B.60
C.48
D.52参考答案:B7.以下程序运行后的输出结果为(
)A.17
B.19
C.21
D.23参考答案:C8.设是公比为正数的等比数列,若,则数列的前7项和为
A.63
B.64
C.127
D.128参考答案:C9.在等比数列{an}中,若a1=,a4=-4,则|a1|+|a2|+…+|an|=(
)A.
B.
C.
D.参考答案:A公比,因为,所以{}是首项为,公比为2的等比数列,所以其前n项和为.10.已知命题,,则(
)A.,
B.,C.,
D., 参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设是椭圆的左右焦点,若该椭圆上一点满足,且以原点为圆心,以为半径的圆与直线有公共点,则该椭圆离心率的取值范围是______________.参考答案:略12.对于函数,使成立的所有常数中,我们把的最小值叫做函数的上确界,则函数的上确界是
。参考答案:513.已知:sin230°+sin290°+sin2150°=sin25°+sin265°+sin2125°=通过观察上述两等式的规律,请你写出一般性的命题:____________________。参考答案:sin2α+sin2(α+60°)+sin2(α+120°)=或sin2(α-60°)+sin2α+sin2α(α+60°)=.略14.用反证法证明命题“a,b∈R,a+b=0,那么a,b中至少有一个不小于0”,反设的内容是.参考答案:假设a,b都小于0【考点】R9:反证法与放缩法.【分析】根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“假设a,b都小于0”,从而得出结论.【解答】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“a,b∈R,a+b=0,那么a,b中至少有一个不小于0”的否定为“假设a,b都小于0”,故答案为:假设a,b都小于015.已知P是抛物线上的一动点,则点P到直线和的距离之和的最小值是__________.参考答案:2【分析】先设,根据点到直线距离公式得到到距离为,再得到到距离为,进而可求出结果.【详解】解:设,则到距离为,则到距离为,∵,∴点到两直线距离和为,∴当时,距离和最小为.故答案为216.
某地区为了了解70~80岁老人的日平均睡眠时间(单位:h),随机选择了50位老人进行调查.下表是这50位老人日睡眠时间的频率分布表.
序号(I)分组(睡眠时间)组中值(GI)频数(人数)频率(FI)1[4,5)4.560.122[5,6)5.5100.203[6,7)6.5200.404[7,8)7.5100.205[8,9]8.540.08在上述统计数据的分析中,一部分计算见流程图,则输出的S的值是________.参考答案:6.4217.参考答案:-1或-2三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)已知函数的图像过点P(-1,2),且在点P处的切线的斜率为-3.(1)求函数的解析式;
(2)求函数的单调递增区间.参考答案:解:(1),
(1分)由题意有,
(3分)
(5分)
(6分)
(2)令,(7分)
得或,
(9分)的递增区间是.
(10分)略19.(本小题满分12分)已知函数,令.(Ⅰ)当时,求的极值;(Ⅱ)当时,求的单调区间;参考答案:所以当时,有极小值;无极大值。………………7分(2)当时,的减区间为,无增区间
……………10分当时,的减区间为,,增区间为、…12分20.已知.(1)讨论的单调性;(2)若,为的两个极值点,求证:.参考答案:(1)见解析(2)见解析【分析】(1)求出定义域以及导数,分类讨论,利用导数的正负讨论函数的单调性;(2)结合(1)可得极值点,为的两个不相等的正实数根,利用根与系数关系写出,的关系式,代入进行化简,可知要证,即证,令函数,利用导数求出函数的单调区间以及最值,即可证明.【详解】(1),
令,对称轴为,①当,即时,的对称轴小于等于0,又,所以在上恒成立,故,在上单调递增.②当,即时,的对称轴大于0.令,,令,得或(i)当时,,,从而,此时在上单调递增.
(ii)当时,,令,解得,由于当时,,,所以当或时,,当时,所以在和上单调递增,在上单调递减.
综上所述,当时,在和上单调递增,在上单调递减(其中,);当时,在上为单调增函数.(2)证明:∵,若,为的两个极值点,则由(1)知,当时,有两个不相等的正实数根为,,则:而故欲证原不等式等价于证明不等式:,因为,所以也就是要证明:对任意,有.令,由于,并且,当时,,则在上为增函数.当时,,则在上为减函数;则在上有最大值,所以在上恒成立,即在上恒成立,故原不等式成立.【点睛】本题考查利用导数讨论函数单调性以及不等式恒成立的问题,综合性强,有一定难度。21.已知函数f(x)=4x+m?2x+1(x∈(﹣∞,0],m∈R)(Ⅰ)当m=﹣1时,求函数f(x)的值域;(Ⅱ)若f(x)有零点,求m的取值范围.参考答案:【考点】34:函数的值域.【分析】(Ⅰ)当m=﹣1时,可得f(x)=)=4x﹣2x+1,转化为二次函数问题求解值域即可.(Ⅱ)f(x)有零点,利用分离参数m,讨论单调性即可得m的取值范围.【解答】解:当m=﹣1时,可得f(x)=)=4x﹣2x+1,令t=2x,x≤0,由指数函数的单调性和值域t∈(0,1].(Ⅰ)函数f(x)化为y=t2﹣t+1=,t∈(0,1].当t=时,y取得最小值为;当t=1时,y取得最大值为1;∴函数的值域为[,1];(Ⅱ)f(x)有零点,即4x+m?2x+1=0有解(x∈(﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年血液净化信息系统项目资金申请报告代可行性研究报告
- 公路护栏施工合同
- 《项目组管理方案》课件
- 2015年中考思品热点总复习(终极预测)
- 余弦定理课件
- 【培训课件】防雷装置设计技术评价讲座
- 16.2《登泰山记》课件 2024-2025学年统编版高中语文必修上册-8
- 2025届内蒙古包头市高考考前提分语文仿真卷含解析
- 2025届辽宁省重点协作校高三一诊考试数学试卷含解析
- 安徽省安庆市达标名校2025届高考冲刺英语模拟试题含解析
- 施工管理中的施工组织和施工计划
- 收纳家具调研报告
- 心理健康教育C证面试20个题目参考答案
- 农田春耕安全生产培训
- 22114-国家开放大学2023年春期末统一考试《人体解剖生理学》答案
- 小型农田水利初步设计
- 《系统解剖学》课程考试复习题库大全-6内脏部分
- 职务犯罪课件
- 2022-2023学年广东省东莞市高二(上)期末英语试卷(含答案解析)
- 农贸市场项目可行性研究报告
- 妇幼健康教育知识宣传
评论
0/150
提交评论