版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西师大附中高二年级数学(理)月考试卷命题:谢辉审题:张和良一、选择题1.已知x为实数,则“”是“x>1”的()A.充分非必要条件 B.充要条件C.必要非充分条件 D.既不充分也不必要条件2.极坐标系中,点A(1,),B(3,)之间的距离是()A. B. C. D.3.把曲线:(为参数)上各点的横坐标压缩为原来的,纵坐标压缩为原来的,得到的曲线为()A. B.C. D.4.方程(t为参数)表示的曲线是()。A.两条射线 B.一条直线 C.一条线段 D.抛物线的一部分5.设A={(x,y)|y=1+},B={(x,y)|y=k(x﹣2)+4},若A∩B中含有两个元素,则实数k的取值范围是()A. B. C. D.6.在下列函数中,当x取正数时,最小值为2的是()A. B.C.D.7.如图所示,某公园设计节日鲜花摆放方案,其中一个花坛由一批花盆堆成六角垛.顶层一个,以下各层堆成正六边形,逐层每边增加一个花盆,若这垛花盆底层最长的一排共有13个花盆,则底层的花盆的个数是()A.91 B.127 C.169 D.2558.已知过双曲线C:﹣=1(a>0,b>0)的中心的直线交双曲线于点A,B,在双曲线C上任取与点A,B不重合的点P,记直线PA,PB,AB的斜率分别为k1,k2,k,若k1k2>k恒成立,则离心率e的取值范围为()A.1<e< B.1<e≤ C.e> D.e≥9.已知f(x)是可导的函数,且(x)<f(x)对于x∈R恒成立,则()A.f(1)<ef(0),f(2014)>e2023f(0) B.f(1)>ef(0),f(2014)>e2023f(0)C.f(1)>ef(0),f(2014)<e2023f(0) D.f(1)<ef(0),f(2014)<e2023f(0)10.直线l:y=k(x﹣)与曲线x2﹣y2=1(x>0)相交于A、B两点,则直线l倾斜角的取值范围是()A.(0,π) B.(,)∪(,) C.[0,)∪(,π) D.(,)11.若直线l1:y=x,l2:y=x+2与圆C:x2+y2﹣2mx﹣2ny=0的四个交点把圆C分成的四条弧长相等,则m=()A.0或1 B.0或﹣1 C.1或﹣1 D.012.定义在R上的函数f(x)满足:,且f(0)=,则的最大值为()A.0 B. C.1 D.2
二填空题13.下列有关命题的说法正确的有(填写序号) ①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0” ②“x=1”是“x2﹣3x+2=0”的充分不必要条件 ③若p∧q为假命题,则p和q均为假命题 ④对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥0. 14.已知为偶函数,当时,,则曲线在处的切线方程式为______________.15.已知f(x)=x3﹣6x2+9x﹣abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0; ②f(0)f(1)<0;③f(0)f(3)>0; ④f(0)f(3)<0.其中正确结论的序号是.16.在平面直角坐标系中,当P(x,y)不是原点时,定义P的“伴随点”为P′(,);当P是原点时,定义P的“伴随点”为它自身,平面曲线C上所有点的“伴随点”所构成的曲线C′定义为曲线C的“伴随曲线”.现有下列命题:①若点A的“伴随点”是点A′,则点A′的“伴随点”是点A;②单位圆的“伴随曲线”是它自身;③若曲线C关于x轴对称,则其“伴随曲线”C′关于y轴对称;④一条直线的“伴随曲线”是一条直线.其中的真命题是(写出所有真命题的序列).三、解答题17.设命题p:“对任意的x∈R,x2﹣2x>a”,命题q:“存在x∈R,使x2+2ax+2﹣a=0”.如果命题p∨q为真,命题p∧q为假,求实数a的取值范围.18.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l的参数方程为为参数,0<α<π),曲线C的极坐标方程为ρsin2θ=4cosθ.(Ⅰ)求曲线C的直角坐标方程;(Ⅱ)设点P的直角坐标为P(2,1),直线l与曲线C相交于A、B两点,并且,求tanα的值.19.数列{an}的前n项和记为Sn,已知an=(Ⅰ)求S1,S2,S3的值,猜想Sn的表达式;(Ⅱ)请用数学归纳法证明你的猜想.20.已知圆O:x2+y2=4,点F(,0),以线段MF为直径的圆内切于圆O,记点M的轨迹为C(1)求曲线C的方程;(2)若过F的直线l与曲线C交于A,B两点,问:在x轴上是否存在点N,使得•为定值?若存在,求出点N坐标;若不存在,说明理由.21.如图,P是抛物线C:上横坐标大于零的一点,直线l过点P并与抛物线C在点P处的切线垂直,直线l与抛物线C相交于另一点Q.(1)当点P的横坐标为2时,求直线l的方程;(2)若,求过点P,Q,O的圆的方程.22.已知直线经过椭圆S:的一个焦点和一个顶点.
(1)求椭圆S的方程;
(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为.①若直线PA平分线段MN,求的值;
②对任意,求证:.
12月考理科数学答案13.①②④14.15.②③16.②③17.18.解:(I)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.(II)将代入y2=4x,得sin2α•t2+(2sinα﹣4cosα)t﹣7=0,所以,所以,或,即或19.20.解:(1)设FM的中点为Q,切点为G,连OQ,QG,则|OQ|+|QG|=|OG|=2,取F关于y轴的对称点F′,连F′M,故|F′M|+|MF|=2(|OQ|+|QG|)=4.点M的轨迹是以F′,F为焦点,长轴长为4的椭圆.其中,a=2,c=,b=1,则曲线C的方程为+y2=1;(2)当直线l的斜率存在时,设其方程为y=k(x﹣),A(x1,y1),B(x2,y2),联立,得.则△>0,,若存在定点N(m,0)满足条件,则有=(x1﹣m)(x2﹣m)+y1y2=x1x2+===.如果要上式为定值,则必须有,解得m=,此时=.验证当直线l斜率不存在时,也符合.故存在点N(,0)满足•为定值.21.解:(Ⅰ)把x=2代入,得y=2,∴点P的坐标为(2,2).…由,①得y'=x,∴过点P的切线的斜率k切=2,…直线l的斜率k1==,…∴直线l的方程为y﹣2=,即x+2y﹣6=0…(Ⅱ)设P(x0,y0),则.∵过点P的切线斜率k切=x0,因为x0≠0.∴直线l的斜率k1==,直线l的方程为.②…设Q(x1,y1),且M(x,y)为PQ的中点,因为,所以过点P,Q,O的圆的圆心为M(x,y),半径为r=|PM|,…且,…所以x0x1=0(舍去)或x0x1=﹣4…联立①②消去y,得由题意知x0,x1为方程的两根,所以,又因为x0>0,所以,y0=1;所以,y1=4…∵M是PQ的中点,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论