坐标与微积分_第1页
坐标与微积分_第2页
坐标与微积分_第3页
坐标与微积分_第4页
坐标与微积分_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学知识梳理A坐标系B导数与微积分(一)极坐标(平面坐标)A坐标系

设P是空间任意一点,在oxy平面的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q在平面oxy上的极坐标,

则点P的位置可用有序数组(ρ,θ,z)表示.

把建立上述对应关系的坐标系叫做柱坐标系.有序数组(ρ,θ,Z)叫点P的柱坐标,记作(ρ,θ,Z).其中xyzoP(ρ,θ,Z)Qθρ≥0,0≤θ<2π,-∞<Z<+∞(二)柱坐标

柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的一部分建立起来的.

空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,Z)之间的变换公式为xyzoP(ρ,θ,Z)Qθ

我们把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系).有序数组(r,φ,θ)叫做点P的球坐标,其中xyzoP(r,φ,θ)Qθrφ

空间的点与有序数组(r,φ,θ)之间建立了一种对应关系.(三)球坐标

空间点P的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换关系为xyzoP(r,φ,θ)Qθrφ数轴平面直角坐标系平面极坐标系空间直角坐标系球坐标系柱坐标系

坐标系是联系形与数的桥梁,利用坐标系可以实现几何问题与代数问题的相互转化,从而产生了坐标法.坐标系小结B导数与微积分导数基本公式(x)=x

-1.(ax)=axlna.(ex)=ex.(sinx)=cosx.(cosx)=-sinx.(tanx)

=

sec2x.(cotx)

=

-csc2x.(secx)

=

secxtanx.(cscx)

=

-cscxcotx.另外还有反三角函数的导数公式:导数运算法则

例3:求下列函数的导数:解:

复合函数求导法则先将要求导的函数分解成基本初等函数,或常数与基本初等函数的和、差、积、商.任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述复合函数的求导法则求出.复合函数求导的关键:正确分解初等函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论