山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析_第1页
山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析_第2页
山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析_第3页
山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析_第4页
山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市蔡家崖村中学2023年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒 B.6米/秒 C.5米/秒 D.8米/秒参考答案:C【考点】导数的几何意义.【专题】计算题.【分析】①求出s的导函数s'(t)=2t﹣1②求出s'(3)【解答】解:s'(t)=2t﹣1,s'(3)=2×3﹣1=5.故答案为C【点评】考查求导法则及导数意义2.已知复数z满足|z-i-1|+|z+i-1|=2,则z在复平面内对应的点的轨迹是(

)A.线段 B.圆 C.椭圆 D.抛物线参考答案:A3.点P到点A(),B()及到直线的距离都相等,如果这样的点恰好只有一个,那么a的值是

(

)A.B.

C.或

D.或参考答案:D4.在△ABC中,若,则B等于(

)A.

B.

C.或

D或

参考答案:C5.已知(3x﹣1)n=a0+a1x+a2x2+a3x3+…+anxn(n∈N*),设(3x﹣1)n展开式的二项式系数和为Sn,Tn=a1+a2+a3+…+an(n∈N*),Sn与Tn的大小关系是()A.Sn>TnB.Sn<TnC.n为奇数时,Sn<Tn,n为偶数时,Sn>TnD.Sn=Tn参考答案:C【考点】二项式系数的性质.【分析】由题意可得Sn=2n,令x=0,可得a0=1.再令x=1可得a0+a1+a2+a3+…+a6=1,从而求得Tn=a1+a2+a3+…+an,比较大小即可.【解答】解:(3x﹣1)n展开式的二项式系数和为Sn=2n,令x=1,Tn=a1+a2+a3+…+an﹣(﹣1)n=2n﹣(﹣1)n,(n∈N*),所以n为奇数时,Sn<Tn,n为偶数时,Sn>Tn;故选:C6.已知,则下列不等关系正确的是(A)

(B)

(C)

(D)参考答案:C7.若m≠0,则过(1,-1)的直线ax+3my+2a=0的斜率为

)A.1

B.-3

C.

D.-参考答案:D略8.(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6 B.7 C.8 D.9参考答案:B【考点】DB:二项式系数的性质.【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x5与x6的系数,列出方程求出n.【解答】解:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6∴35Cn5=36Cn6解得n=7故选B【点评】本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.9.经过两点A(4,2y+1),B(2,﹣3)的直线的倾斜角为,则y=()A.﹣1B.﹣3C.0D.2参考答案:B考点:直线的倾斜角.分析:首先根据斜率公式直线AB的斜率k,再由倾斜角和斜率的关系求出直线的斜率,进而求出a的值.解答:解:因为直线经过两点A(4,2y+1),B(2,﹣3)所以直线AB的斜率k==y+2又因为直线的倾斜角为,所以k=﹣1,所以y=﹣3.故选:B.点评:本题考查直线的倾斜角和斜率的关系,以及由两点求直线的斜率,此题属于基础题型.10.甲、乙两名同学在5次数学考试中,成绩统计用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用甲、乙表示,则下列结论正确的是()A.甲>乙,且甲比乙成绩稳定

B.甲>乙,且乙比甲成绩稳定C.甲<乙,且甲比乙成绩稳定

D.甲<乙,且乙比甲成绩稳定参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.抛物线x2=y上一点到直线2x﹣y﹣4=0的距离最短的点的坐标是.参考答案:(1,1)【考点】抛物线的简单性质.【分析】设抛物线y=x2上一点为A(x0,x02),求出点A(x0,x02)到直线2x﹣y﹣4=0的距离,利用配方法,由此能求出抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短的点的坐标.【解答】解:设抛物线y=x2上一点为A(x0,x02),点A(x0,x02)到直线2x﹣y﹣4=0的距离d==|(x0﹣1)2+3|,∴当x0=1时,即当A(1,1)时,抛物线y=x2上一点到直线2x﹣y﹣4=0的距离最短.故答案为:(1,1).12.已知曲线在点(1,1)处的切线方程是_____________________参考答案:2x-y-1=0【分析】求出函数的导数,计算得,即可求出切线方程.【详解】由题意,函数,则,且,故切线方程是:y-1=2(x-1),即y=2x-1,故答案为:y=2x-1.【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中熟记导数的几何意义,合理利用导数的几何意义求解是解答的关键,着重考查了运算与求解能力,属于基础题.13.比较大小:

*

(用“”或“”符号填空).参考答案:>略14.观察下面关于循环小数化成分数的等式:(注意:头上加点的数字)0.==,1.==,0.=,0.000=×=,据此推测循环小数0.2可化成分数.参考答案:【考点】归纳推理.【分析】由已知中循环小数化分数的等式0.==,1.==,0.=,0.000=×=,分析出分母分子与循环节,及循环节位数的关系,可得答案.【解答】解:∵0.==,1.==,0.=,0.000=×=,…∴0.2=0.2+0.1×0.==,故答案为.15.展开式中的常数项为

(用数字作答)参考答案:4016.命题:两条直线垂直同一个平面,那么这两条直线平行.将这个命题用符号语言表示为:

.参考答案:若直线m⊥平面α,直线n⊥平面α,则m∥n【考点】平面的基本性质及推论.【分析】根据几何符号语言的应用,对题目中的语句进行表示即可.【解答】解:两条直线垂直同一个平面,那么这两条直线平行,用符号语言表示为:若直线m⊥平面α,直线n⊥平面α,则m∥n;故答案为:若直线m⊥平面α,直线n⊥平面α,则m∥n.17.已知函数f(x)=sinx,则f′()=.参考答案:【分析】根据导数的运算法则计算即可.【解答】解:f(x)=sinx,则f′(x)=cosx,则f′()=cos=,故答案为:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知p:|3x﹣4|>2,>0,r:(x﹣a)(x﹣a﹣1)<0,(1)?p是?q的什么条件?(2)若?r是?p的必要非充分条件,试求实数a的取值范围.参考答案:【考点】必要条件、充分条件与充要条件的判断.【分析】(1)求出命题p,q的等价条件,根据充分条件和必要条件的定义进行判断即可.(2)根据¬r是¬p的必要非充分条件,进行转化,建立不等式关系进行求解即可.【解答】解:(1)由|3x﹣4|>2得3x﹣4>2或3x﹣4<﹣2,即x>2或x<,即p:x>2或x<,¬p:≤x≤2由>0得x2﹣x﹣2>0得x>2或x<﹣1,即:¬q:﹣1≤x≤2,则¬p是¬q的充分不必要条件.(2)由(x﹣a)(x﹣a﹣1)<0得a<x<a+1,即r:a<x<a+1,若¬r是¬p的必要非充分条件,则p是r的必要非充分条件,即a≥2或a+1≤,即a≥2或a≤﹣,即实数a的取值范围是a≥2或a≤﹣.19.已知函数f(x)=lnx﹣.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:x>0,x<(x+l)ln(x+1),(Ⅲ)比较:()100,e的大小关系,(e为自然对数的底数).参考答案:【考点】6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(Ⅱ)问题等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,问题等价于:lnt>,根据函数的单调性证明即可;(Ⅲ)根据<1,令x=,得到(1+)ln(x+1)>1,判断大小即可.【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),因为f′(x)=,当a≤0时,f'(x)>0,所以函数f(x)在(0,+∞)上单调递增;当a>0时,由f'(x)<0得0<x<a,由f'(x)>0得x>a,所以函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(Ⅱ)证明:①因为x>0,x<(x+l)ln(x+1)等价于ln(x+1)>,令t=x+1,则x=t﹣1,由x>0得t>1,所以不等式ln(x+1)>(x>0)等价于:lnt>,即:lnt﹣>0(t>1),由(Ⅰ)得:函数g(t)=lnt﹣在(1,+∞)上单调递增,所以g(t)>g(1)=0,即:ln(x+1)>;②因为x>0,不等式x<(x+l)ln(x+1)等价于ln(x+1)<x,令h(x)=ln(x+1)﹣x,则h′(x)=﹣1=,所以h'(x)<0,所以函数h(x)=ln(x+1)﹣x在(0,+∞)上为减函数,所以h(x)<h(0)=0,即ln(x+1)<x.由①②得:x>0时,x<(x+l)ln(x+1);(Ⅲ)由(Ⅱ)得:x>0时,<1,所以令x=,得100×ln(+1)<1,即ln()100<1,所以()100<e;又因为>(x>0),所以(1+)ln(x+1)>1,令x=得:100×ln>1,所以ln()100>1,从而得()100>e.所以()100<()100.20.如图,四边形ABCD是边长为2的正方形,平面ABCD⊥平面ABEF,AF∥BE,AB⊥BE,AB=BE=2,AF=1.(Ⅰ)求证:AC⊥平面BDE;(Ⅱ)求证:AC∥平面DEF;(Ⅲ)求三棱锥C﹣DEF的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)推导出BE⊥AC,AC⊥BD.由此能证明AC⊥平面BDE.(Ⅱ)设AC∩BD=O,设G为DE的中点,连结OG,FG,推导出四边形AOGF为平行四边形,从而AO∥FG,即AC∥FG,由此能证明AC∥平面DEF.(Ⅲ)推导出点C到平面DEF的距离等于A点到平面DEF的距离,由VC﹣DEF=VA﹣DEF,能求出三棱锥C﹣DEF的体积.【解答】(本小题满分14分)证明:(Ⅰ)因为平面ABCD⊥平面ABEF,平面ABCD∩平面ABEF=AB,且AB⊥BE,所以BE⊥平面ABCD.因为AC?平面ABCD,所以BE⊥AC.又因为四边形ABCD为正方形,所以AC⊥BD.因为BD∩BE=B,所以AC⊥平面BDE.…(4分)(Ⅱ)设AC∩BD=O,因为四边形ABCD为正方形,所以O为BD中点.设G为DE的中点,连结OG,FG,则OG∥BE,且.由已知AF∥BE,且,则AF∥OG,且AF=OG.所以四边形AOGF为平行四边形.所以AO∥FG,即AC∥FG.因为AC?平面DEF,FG?平面DEF,所以AC∥平面DEF.…(9分)解:(Ⅲ)由(Ⅰ)可知BE⊥平面ABCD,因为AF∥BE,所以AF⊥平面ABCD,所以AF⊥AB,AF⊥AD.又因为四边形ABCD为正方形,所以AB⊥AD,所以AD⊥平面ABEF.由(Ⅱ)可知,AC∥平面DEF,所以,点C到平面DEF的距离等于A点到平面DEF的距离,所以VC﹣DEF=VA﹣DEF.因为AB=AD=2AF=2.所以=.故三棱锥C﹣DEF的体积为.…(14分)【点评】本题考查线面垂直的证明,考查线面平行的证明,考查三棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.21.已知函数f(x)=x3+ax2+(2a﹣1)x(1)若f′(﹣3)=0,求a的值;(2)若a>1,求函数f(x)的单调区间与极值点;(3)设函数g(x)=f′(x)是偶函数,若过点A(1,m)(m≠﹣)可作曲线y=f(x)的三条切线,求实数m的范围.参考答案:【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求导数fˊ(x),解方程f'(﹣3)=0,即可求得结论;(2)求导数fˊ(x),根据a>1,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可求出函数的单调区间和极值点;(3)设出曲线过点P切线方程的切点坐标,把切点的横坐标代入到(1)求出的导函数中即可表示出切线的斜率,根据切点坐标和表示出的斜率,写出切线的方程,把P的坐标代入切线方程即可得到关于切点横坐标的方程,求出方程的解即可得到切点横坐标的值,分别代入所设的切线方程即可;【解答】解:f′(x)=x2+2ax+2a﹣1(1)∵f'(﹣3)=0,∴9﹣6a+2a﹣1=0,解得:a=2;(2)f'(x)=(x+1)(x+2a﹣1),∵a>1,由f'(x)=(x+1)(x+2a﹣1)>0得x<1﹣2a或x>﹣1,所以f(x)的单调增区间为(﹣∞,1﹣2a)和(﹣1,+∞);由f'(x)=(x+1)(x+2a﹣1)<0得1﹣2a<x<﹣1,所以f(x)的单调减区间为(1﹣2a,﹣1);且x=1﹣2a是极大值点,x=﹣1是极小值点;(3)∵g(x)=f'(x)是偶函数,∴a=0∴,设曲线线过点的切线相切于点P(x0,),则切线的斜率k=x02﹣1,∴切线方程为y﹣()═(x02﹣1)(x﹣x0),∵点A(1,m)在切线上,∴m﹣()=(x02﹣1)(1﹣x0),解得m=令h(x)=,则h′(x)=﹣2x2+2x=2x(1﹣x)=0,解得x=0,x=1,当x=0时,h(x)取极小值﹣1,当x=1时,h(x)取极大值﹣,∴实数m的取值范围是﹣1<m<﹣.22.某校在学年期末举行“我最喜欢的文化课”评选活动,投票规则是一人一票,高一(1)班44名学生和高一(7)班45名学生的投票结果如下表(无废票):

语文数学外语物理化学生物政治历史地理高一(1)班697545332高一(7)班a6b456523

该校把

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论