山西省吕梁市积翠中学2021年高一数学理期末试题含解析_第1页
山西省吕梁市积翠中学2021年高一数学理期末试题含解析_第2页
山西省吕梁市积翠中学2021年高一数学理期末试题含解析_第3页
山西省吕梁市积翠中学2021年高一数学理期末试题含解析_第4页
山西省吕梁市积翠中学2021年高一数学理期末试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市积翠中学2021年高一数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则下列各式正确的是A

B

C

D参考答案:D略2.已知,则sin2α﹣sinαcosα的值是()A.B.C.﹣2D.2参考答案:A【考点】同角三角函数间的基本关系;三角函数的恒等变换及化简求值.【分析】由由已知条件求出tanα

值,化简sin2α﹣sinαcosα=,把tanα值代入运算.【解答】解:∵,∴,∴tanα=2.∴sin2α﹣sinαcosα====,故选A.3.已知全集,,,则为(

)A.

B.

C.

D.参考答案:A,是不包括0,2的整数集,所以

.综上所述,答案选择A.4.在公差为4的正项等差数列中,与2的算术平均值等于与2的几何平均值,其中

表示数列的前三项和,则为

A.38

B.40

C.42

D.44参考答案:A5.方程的两根的等比中项是(

)w.w.w.k.s.5.u.c.o.m

A.

B.

C.

D.参考答案:D略6.已知向量则()A.23

B.57

C.63

D.83参考答案:D7.设a=,则a,b的大小关系是()A.a>b B.a<b C.a=b D.不能确定参考答案:B【考点】根式与分数指数幂的互化及其化简运算.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】利用指数函数的单调性求解.【解答】解:∵a=,∴0<,,∴a<b.故选:B.【点评】本题考查两个数的大小的比较,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.8.若函数,则的值是(A)9

(B)7

(C)5

(D)3

参考答案:C略9.在△ABC中,已知,则C=(

)A.300

B.1500

C.450

D.1350参考答案:C10.在△ABC中,若,,,则b等于(

)A.3 B.4 C.5 D.6参考答案:D【分析】直接运用正弦定理求解即可.【详解】由正弦定理可知中:,故本题选D.【点睛】本题考查了正弦定理的应用,考查了数学运算能力.二、填空题:本大题共7小题,每小题4分,共28分11.已知函数f(x)=2x﹣2﹣x,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,则实数t的取值范围是

.参考答案:(﹣3,+∞)

【考点】函数恒成立问题.【分析】通过判定函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增、奇函数,脱掉”f“,转化为恒成立问题,分离参数求解.【解答】解:∵函数f(x)=2x﹣2﹣x)=2x﹣x在R上单调递增,又∵f(﹣x)=﹣(2x﹣2﹣x)=﹣f(x),故f(x)是奇函数,若对任意的x∈[1,3],不等式f(x2+tx)+f(4﹣x)>0恒成立,?对任意的x∈[1,3],不等式f(x2+tx)>f(﹣4+x)恒成立,?对任意的x∈[1,3],x2+(t﹣1)x+4>0?(t﹣1)x>﹣x2﹣4?t﹣1>﹣(x+,∵,∴t﹣1>﹣4,即t>﹣3.故答案为:(﹣3.+∞)【点评】本题考查了函数的单调性、奇函数,恒成立问题,分离参数法,属于中档题.12.在四棱柱ABCD﹣A′B′C′D′中,AA′⊥底面ABCD,四边形ABCD为梯形,AD∥BC且AD=AA′=2BC.过A′,C,D三点的平面与BB′交于点E,F,G分别为CC′,A′D′的中点(如图所示)给出以下判断:①E为BB′的中点;②直线A′E和直线FG是异面直线;③直线FG∥平面A′CD;④若AD⊥CD,则平面ABF⊥平面A′CD;⑤几何体EBC﹣A′AD是棱台.其中正确的结论是.(将正确的结论的序号全填上)参考答案:①③④⑤【考点】空间中直线与直线之间的位置关系;棱柱的结构特征.【专题】空间位置关系与距离.【分析】利用四棱柱的性质,结合线面关系、面面关系定理对选项分别分析解答.【解答】解:对于①,∵四棱柱ABCD﹣A1B1C1D1中,四边形ABCD为梯形,AD∥BC,∴平面EBC∥平面A1D1DA,∴平面A1CD与面EBC、平面A1D1DA的交线平行,∴EC∥A1D∴△EBC∽△A1AD,∴,∴E为BB1的中点;故①正确;对于②,因为E,F都是棱的中点,所以EF∥B'C',又B'C'∥A'D',所以EF∥A'D',所以A'E,FG都在平面EFD'A'中;故②错误;对于③,由②可得EF∥A'G,EF=A'G,所以四边形A'EFG是平行四边形,所以FG∥A'E,又A'E?平面A'CD中,FG?平面A'CD,所以直线FG∥平面A′CD正确;对于④,连接AD',容易得到BF∥AD',所以ABFD'四点共面,因为AD⊥CD,AD'在底面的射影为AD,所以CD⊥AD',又AD'⊥BF,所以BF⊥CD,又BF⊥CE,所以BF⊥平面A'CD,BF?平面ABFD',所以平面ABF⊥平面A′CD;故④正确;对于⑤,由④得到,AB与D'F,DC交于一点,所以几何体EBC﹣A′AD是棱台.故⑤正确;故答案为:①③④⑤.【点评】本题考查了三棱柱的性质的运用以及其中的线面关系和面面关系的判断,比较综合.13.函数的单调递增区间为__________.参考答案:函数的定义域为,令,则,因为在单调递减在单调递减,在单调递增,由复合函数的单调性可知函数的单调增区间为.故答案为:.14.已知角θ的终边在射线y=2x(x≤0)上,则sinθ+cosθ=.参考答案:﹣【考点】G9:任意角的三角函数的定义.【分析】根据三角函数的定义,直接求出sinθ和cosθ【解答】解:在射线y=2x(x≤0)上任取一点(﹣1,﹣2),∴r==,∴sinθ==,cosθ==,∴sinθ+cosθ=﹣,故答案为:.15.已知_______________参考答案:16.若2a=5b=10,则=.参考答案:1【考点】对数的运算性质.【分析】首先分析题目已知2a=5b=10,求的值,故考虑到把a和b用对数的形式表达出来代入,再根据对数的性质以及同底对数和的求法解得,即可得到答案.【解答】解:因为2a=5b=10,故a=log210,b=log510=1故答案为1.17.三棱锥P-ABC中,PA⊥底面ABC,PA=3,底面ABC是边长为2的正三角形,则三棱锥P-ABC的体积等于________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.根据条件求下列各函数的解析式:(1)已知f(x)是二次函数,若f(0)=0,f(x+1)=f(x)+x+1,求f(x).(2)已知,求f(x)(3)若f(x)满足,求f(x).参考答案:【考点】二次函数的性质;函数解析式的求解及常用方法.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】求函数解析式(1)若已知函数f(x)的类型,常采用待定系数法;(2)若已知f表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法.【解答】解:(1)设f(x)=ax2+bx+c,(a≠0),由于f(0)=0,得:f(x)=ax2+bx,又由f(x+1)=f(x)+x+1,∴a(x+1)2+b(x+1)=ax2+bx+x+1即ax2+(2a+b)x+a+b=ax2+(b+1)x+1,∴,∴f(x)=;(2)设,∴f(u)=(u﹣1)2+2(u﹣1)=u2﹣1,(u≥1),∴f(x)=x2﹣1(x≥1)(3)用代x可得:,与联列可消去得:f(x)=.【点评】抽象函数通常是指没有给出函数的具体解析式,只给出了其他一些条件(如:定义域、经过的特殊的点、解析递推式、部分图象特征等),它是高中数学函数部分的难点,也是与大学的一个衔接点.因无具体解析式,理解研究起来往往很困难.但利用函数模型往往能帮我们理清题意,寻找解题思路,从而方便快捷的解决问题.19.数列{满足:

证明:(1)对任意为正整数;(2)对任意为完全平方数.参考答案:证明:(1)由题设得且{严格单调递增,将条件式变形得,

两边平方整理得

①-②得

由③式及可知,对任意为正整数.……10分(2)将①两边配方,得。

记从而④式成立.

是完全平方数.……20分20.已知设函数f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并证明;(3)求使f(x)>0的x的取值范围.参考答案:【考点】函数奇偶性的判断;函数的定义域及其求法.【专题】定义法;函数的性质及应用.【分析】(1)根据对数函数的真数要大于0列不等式组求解定义域.(2)利用定义判断函数的奇偶性.(3)f(x)>0,即loga(1+2x)﹣loga(1﹣2x)>0,对底数a讨论,求解x的取值范围.【解答】解:(1)函数f(x)=loga(1+2x)﹣(loga(1﹣2x)(a>0,a≠1).其定义域满足,解得:故得f(x)的定义域为{x|}(2)由(1)可知f(x)的定义域为{x|},关于原点对称.又∵f(﹣x)=loga(1﹣2x)﹣(loga(1+2x)=﹣f(x)∴f(x)为奇函数.(3)f(x)>0,即loga(1+2x)﹣loga(1﹣2x)>0,?loga(1+2x)>loga(1﹣2x)当a>1时,原不等式等价为:1+2x>1﹣2x,解得:x>0.当0<a<1时,原不等式等价为:1+2x<1﹣2x,解得:x<0.又∵f(x)的定义域为(,).所以使f(x)>0的x的取值范围,当a>1时为(0,);当0<a<1时为(,0);【点评】本题考查了对数函数的定义域的求法和奇偶性的运用,比较基础.21.解下列不等式:(1)(2)参考答案:(1)解:先将最高次项系数变为正数:方程的根为不等式的解集为

……………5分(2)不等式等价于解得:

不等式的解集为

……………10分22.商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?参考答案:【考点】函数模型的选择与应用;一元二次不等式的应用.【分析】(1)先设购买人数为n人,羊毛衫的标价为每件x元,利润为y元,列出函数y的解析式,最后利用二次函数的最值即可求得商场要获取最大利润,羊毛衫的标价应定为每件多少元即可;(2)由题意得出关于x的方程式,解得x值,从而即可解决商场要获取最大利润的75%,每件标价为多少元.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论