下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市学院附属中学2021年高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线x+1=0的倾斜角为()A.90° B.45° C.135° D.60°参考答案:A【考点】直线的倾斜角.【专题】转化思想;三角函数的求值;直线与圆.【分析】设直线x+1=0的倾斜角为θ,θ∈[0°,180°),由于直线x+1=0与x轴垂直,即可得出.【解答】解:设直线x+1=0的倾斜角为θ,θ∈[0°,180°),∵直线x+1=0与x轴垂直,∴θ=90°.故选:A.【点评】本题考查了直线的倾斜角与斜率的关系,考查了推理能力与计算能力,属于基础题.2.已知:全集,集合,则(
)A、(1,3)
B、
C、
D、参考答案:C3.下列说法中正确的是
(
)A.“”是直线“与直线平行”的充要条件;B.命题“”的否定是“”;C.命题“若,则方程有实数根”的逆否命题为:“若方程无实数根,则”;D.若为假命题,则p,q均为假命题。参考答案:C略4.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A、B两样本的下列数字特征对应相同的是A.平均数 B.标准差 C.众数 D.中位数参考答案:B5.设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.4B.﹣C.2D.﹣参考答案:A考点:利用导数研究曲线上某点切线方程;直线的斜率.专题:计算题.分析:欲求曲线y=f(x)在点(1,f(1))处切线的斜率,即求f′(1),先求出f′(x),然后根据曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1求出g′(1),从而得到f′(x)的解析式,即可求出所求.解答:解:f′(x)=g′(x)+2x.∵y=g(x)在点(1,g(1))处的切线方程为y=2x+1,∴g′(1)=2,∴f′(1)=g′(1)+2×1=2+2=4,∴y=f(x)在点(1,f(1))处切线斜率为4.故选A.点评:本题主要考查了利用导数研究曲线上某点切线方程,直线的斜率等有关基础知识,考查运算求解能力、推理论证能力,属于基础题.6.若曲线的一条切线与直线垂直,则的方程是(
)
A.
B.
C.
D.参考答案:A7.已知集合A={﹣1,0,1,2},B={﹣2,1,2},则A∩B=(
)A.{1}B.{2}C.{1,2}D.{﹣2,0,1,2}参考答案:C考点:交集及其运算.专题:计算题.分析:根据交集的定义可知,交集即为两集合的公共元素所组成的集合,求出即可.解答: 解:由集合A={﹣1,0,1,2},集合B={﹣2,1,2},得A∩B={1,2}故选C.点评:此题考查了两集合交集的求法,是一道基础题.8.如果,,而且,那么的值是A.4
B.
C.
D.参考答案:D9.展开式中含项的系数为A.
B.
C.
D.参考答案:A10.从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有
A.300种
B.240种
C.144种
D.96种参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.在研究关于曲线的性质过程中,有同学得到了如下结论①曲线关于原点、轴对称②曲线的渐近线为③曲线的两个顶点分别为④曲线上的点到原点的最近距离为2.上述判断正确的编号为__________.参考答案:①③④略12.数列{an}的通项公式为an=2n﹣49,Sn达到最小时,n等于.参考答案:24【考点】数列的函数特性.【分析】先由an=2n﹣49,判断数列{an}为等差数列,从而,结合二次函数的性质可求.【解答】解:由an=2n﹣49可得an+1﹣an=2(n+1)﹣49﹣(2n﹣49)=2是常数,∴数列{an}为等差数列,∴,且a1=2×1﹣49=﹣47,∴=(n﹣24)2﹣242结合二次函数的性质可得,当n=24时,和Sn有最小值.故答案为:24.13.在△中,,,,则___________.参考答案:略14.在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点;②如果k与b都是无理数,则直线y=kx+b不经过任何整点;③如果直线l经过两个不同的整点,则直线l必经过无穷多个整点;④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数;⑤存在恰经过一个整点的直线.参考答案:①③⑤【考点】命题的真假判断与应用.【分析】①举一例子即可说明本命题是真命题;②举一反例即可说明本命题是假命题;③假设直线l过两个不同的整点,设直线l为y=kx,把两整点的坐标代入直线l的方程,两式相减得到两整点的横纵坐标之差的那个点也为整点且在直线l上,利用同样的方法,得到直线l经过无穷多个整点,得到本命题为真命题;④当k,b都为有理数时,y=kx+b可能不经过整点,例如k=,b=;⑤举一例子即可得到本命题为真命题.【解答】解:①令y=x+,既不与坐标轴平行又不经过任何整点,所以本命题正确;②若k=,b=,则直线y=x+经过(﹣1,0),所以本命题错误;设y=kx为过原点的直线,若此直线l过不同的整点(x1,y1)和(x2,y2),把两点代入直线l方程得:y1=kx1,y2=kx2,两式相减得:y1﹣y2=k(x1﹣x2),则(x1﹣x2,y1﹣y2)也在直线y=kx上且为整点,通过这种方法得到直线l经过无穷多个整点,则③正确;④当k,b都为有理数时,y=kx+b可能不经过整点,例如k=,b=,故④不正确;⑤令直线y=x恰经过整点(0,0),所以本命题正确.综上,命题正确的序号有:①③⑤.故答案为:①③⑤.15.的展开式中的系数是
。参考答案:-2016.设P是一个数集,且至少含有两个数,若对任意a、b∈P,都有a+b、a-b、ab、∈P(除数b≠0)则称P是一个数域,例如有理数集Q是数域,有下列命题:①数域必含有0,1两个数;
②整数集是数域;③若有理数集QM,则数集M必为数域;
④数域必为无限集.其中正确的命题的序号是
.(把你认为正确的命题的序号都填上)参考答案:①④17.设x,y满足的约束条件,则z=x+2y的最大值为.参考答案:7考点: 简单线性规划.
专题: 不等式的解法及应用.分析: 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答: 解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点B时,直线y=﹣的截距最大,此时z最大.由,得,即B(3,2),此时z的最大值为z=1+2×3=1+6=7,故答案为:7.点评: 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=ax2﹣ex(a∈R)(Ⅰ)当a=1时,判断函数f(x)的单调区间并给予证明;(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2),证明:﹣<f(x1)<﹣1.参考答案:【考点】利用导数研究函数的单调性;利用导数研究函数的极值.【分析】(Ⅰ)a=1时,f(x)=x2﹣ex,f′(x)=2x﹣ex,f″(x)=2﹣ex,利用导数研究其单调性可得当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,即可得出.(II)f(x)有两个极值点x1,x2(x1<x2),可得f′(x)=2ax﹣ex=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣ex=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,可得0<x1<1<ln2a,进而得出.【解答】(Ⅰ)解:a=1时,f(x)=x2﹣ex,f′(x)=2x﹣ex,f″(x)=2﹣ex,令f″(x)>0,解得x<ln2,此时函数f′(x)单调递增;令f″(x)<0,解得x>ln2,此时函数f′(x)单调递减.∴当x=ln2时,函数f′(x)取得最大值,f′(ln2)=2ln2﹣2<0,∴函数f(x)在R上单调递减.(Ⅱ)证明:f(x)有两个极值点x1,x2(x1<x2),∴f′(x)=2ax﹣ex=0有两个实根x1,x2(x1<x2),由f″(x)=2a﹣ex=0,得x=ln2a.f′(ln2a)=2aln2a﹣2a>0,得ln2a>1,解得2a>e.又f′(0)=﹣1<0,f′(1)=2a﹣e>0,∴0<x1<1<ln2a,由f′(x1)==0,可得,f(x1)===(0<x1<1).∴可知:x1是f(x)的极小值点,∴f(x1)<f(0)=﹣1.f(x1)>=﹣2ax1>.19.(本小题满分13分)某个集团公司下属的甲、乙两个企业在2012年1月的产值都为a万元,甲企业每个月的产值与前一个月相比增加的产值相等,乙企业每个月的产值与前一个月相比增加的百分数相等,到2013年1月两个企业的产值再次相等.(1)试比较2012年7月甲、乙两个企业产值的大小,并说明理由;(2)甲企业为了提高产能,决定投入3.2万元买台仪器,并且从2013年2月1日起投入使用.从启用的第一天起连续使用,第n天的维修保养费为元(),求前n天这台仪器的日平均耗费(含仪器的购置费),并求日平均耗资最小时使用的天数?参考答案:(1)设从2012年1月到2013年1月甲企业每个月的产值分别为,乙企业每个月的产值分别为.………………1分由题意成等差数列,成等比数列,∴,.……………………2分∵,从而=,……………4分∴到7月份甲企业的产值比乙企业的产值要大.………5分(2)设一共使用了n天,n天的平均耗资=……………8分==(元).………10分当且仅当时,取得最小值,此时n=800,……………12分即日平均耗资最小时使用了800天.………………13分20.已知为常数,且,函数(e=2.71828…是自然对数的底数).(1)求函数的单调区间;(2)当时,是否同时存在实数和,使得对每一个,直线y=t与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.参考答案:(1)由f(e)=2得b=2.,可得f(x)=-ax+2+axlnx.而f′(x)=alnx.因为a≠0,故:①当a>0时,由f′(x)>0得x>1,由f′(x)<0得0<x<1;②当a<0时,由f′(x)>0得0<x<1,由f′(x)<0得x>1.综上,当a>0时,函数f(x)的单调递增区间为(1,+∞),单调递减区间为(0,1);当a<0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2)当a=1时,f(x)=-x+2+xlnx,f′(x)=lnx.
由(1)可得,当x在区间内变化时,f′(x),f(x)的变化情况如下表:x1(1,e)ef′(x)
-0+
f(x)2-单调递减极小值1单调递增2又2-<2,所以函数f(x)(x∈)的值域为[1,2].据此可得,若相对每一个t∈[m,M],直线y=t与曲线y=f(x)都有公共点;并且对每一个t∈(-∞,m)∪(M,+∞),直线y=t与曲线y=f(x)都没有公共点.综上,当a=1时,存在最小的实数m=1,最大的实数M=2,使得对每一个t∈[m,M],直线y=t与曲线y=f(x)都有公共点.
略21.[12分]口袋里装有7个大小相同小球,其中三个标有数字1,两个标有数字2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泳池赛道分道线市场发展预测和趋势分析
- 轮椅市场发展预测和趋势分析
- 软式手提袋市场发展预测和趋势分析
- 2024年度版权质押合同(融资版)
- 2024年度场地租赁合同:大型商超与承租方的商业合作模式
- 2024年度办公室绿化布置合同
- 2024年度智能穿戴设备研发与制造合同
- 2024年度版权授权与出版合同
- 2024年度深圳租赁合同中之附加条款与特殊规定
- 04版电子商务平台技术支持服务合同
- 物业公司有偿服务管理办法及思路
- 五年级上册科学07.热辐射 教学设计含反思
- 生态学研究方法知识点概括以及生态学研究方法
- 法学方法论网考题库答案 吉林大学
- 产品设计、工艺更改通知书
- 大象版2022-2023六年级科学上册《2.1雾和云》课件
- 三年级下册美术课件-第4课 瓜果飘香丨赣美版
- 学术报告厅舞台灯光音响系统项目工程施工技术方案及技术措施
- 老年友善医院创建-老年人社会服务相关职责
- 【课题研究】-《普通高中英语阅读课文教学研究》结题报告
- 装维人员施工安全操作规范培训课件
评论
0/150
提交评论