版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁市前元庄中学高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设变量x,y满足约束条件,则目标函数z=y﹣2x的最小值为()A.﹣B.﹣11C.﹣D.3参考答案:B2.平面与平面平行的条件可以是(
)A.内有无穷多条直线与平行;
B.直线a//,a//C.直线a,直线b,且a//,b//
D.内的任何直线都与平行参考答案:D略3.在△ABC中,a,b,c分别为A,B,C的对边,如果a,b,c成等差数列,,△ABC的面积为,那么b=()A. B. C. D.参考答案:B试题分析:由余弦定理得,又面积,因为成等差数列,所以,代入上式可得,整理得,解得,故选B.考点:余弦定理;三角形的面积公式.4.sin2cos3tan4的值()A.小于0 B.大于0 C.等于0 D.不存在参考答案:A【考点】三角函数值的符号.【分析】根据2弧度、3弧度、4弧度所在象限分析三角函数值的正负,最后得出答案.【解答】解:∵1弧度大约等于57度,2弧度等于114度,∴sin2>0∵3弧度小于π弧度,在第二象限∴cos3<0∵4弧度小于弧度,大于π弧度,在第三象限∴tan4>0∴sin2cos3tan4<0故答案选A【点评】本题主要考查三角函数值的符号问题.常常根据角所在的象限来判断函数值的正负.5.函数的零点是()
A.-,-1B.-,1
C.,-1
D.,1
参考答案:D略6.若不等式对任意实数均成立,则实数的取值范围是(
)
A.
B.
C.
D.参考答案:A略7.下列函数中,在区间(0,+∞)上为增函数的是()A. B.y=(x﹣1)2 C.y=2﹣x D.y=log0.5x参考答案:A【考点】函数单调性的判断与证明.【分析】根据基本初等函数的图象与性质,即可判断函数的单调性,从而得出结论.【解答】解:对于A,函数y=在定义域[0,+∞)上为单调增函数,满足题意;对于B,函数y=(x﹣1)2在区间(﹣∞,1)上是单调减函数,(1,+∞)上是单调增函数,不满足题意;对于C,函数y=2﹣x在定义域R上为单调减函数,不满足题意;对于D,函数y=log0.5x在定义域(0,+∞)上为单调减函数,不满足题意.故选:A.8.已知函数y=f(x)的定义R在上的奇函数,当x<0时f(x)=x+1,那么不等式f(x)<的解集是() A. B. C. D.参考答案:B【考点】函数奇偶性的性质. 【专题】计算题;函数思想;综合法;函数的性质及应用. 【分析】可设x>0,从而有﹣x<0,根据f(x)为奇函数及x<0时f(x)=x+1便可得出x>0时,f(x)=x﹣1,这样便可得出f(x)在(﹣∞,0),[0,+∞)上为增函数,并且,讨论x:x<0时,原不等式可变成,从而有,同理可以求出x≥0时,原不等式的解,求并集即可得出原不等式的解集. 【解答】解:设x>0,﹣x<0,则:f(﹣x)=﹣x+1=﹣f(x); ∴f(x)=x﹣1; ∴; ∴,且f(x)在(﹣∞,0),[0,+∞)上为增函数; ∴①若x<0,由得,f(x); ∴; ②若x≥0,由f(x)得,; ∴; 综上得,原不等式的解集为. 故选:B. 【点评】考查奇函数的定义,对于奇函数,已知一区间上的解析式,求对称区间上的解析式的方法和过程,一次函数的单调性,分段函数单调性的判断,以及根据函数单调性解不等式的方法. 9.下列命题中错误的个数为:()①y=的图象关于(0,0)对称;②y=x3+x+1的图象关于(0,1)对称;③y=的图象关于直线x=0对称;④y=sinx+cosx的图象关于直线x=对称.A.0 B.1 C.2 D.3参考答案:A【考点】函数的图象.【分析】根据函数的奇偶性判断,①③,根据对称的定义判断②,根据三角函数的图象判断④【解答】解:①y=,f(﹣x)=+=+=﹣=﹣﹣=﹣(+)=﹣f(x),∴函数为奇函数,则图象关于(0,0)对称,故正确②y=x3+x+1的图象关于(0,1)对称;由题意设对称中心的坐标为(a,b),则有2b=f(a+x)+f(a﹣x)对任意x均成立,代入函数解析式得,2b=(a+x)3+3(a+x)+1+(a﹣x)3+3(a﹣x)+1对任意x均成立,∴a=0,b=1即对称中心(0,1),故正确③y=的图象关于直线x=0对称,因为函数为偶函数,故函数关于y轴(x=0)对称,故正确,④y=sinx+cosx=sin(x+)的图象关于直线x+=对称,即x=对称,故正确.故选:A10.(5分)如图,三棱柱ABC﹣A1B1C1中,D是棱AA1的中点,平面BDC1分此棱柱为上下两部分,则这上下两部分体积的比为() A. 2:3 B. 1:1 C. 3:2 D. 3:4参考答案:B考点: 棱柱、棱锥、棱台的体积.专题: 空间位置关系与距离.分析: 利用特殊值法,设三棱柱ABC﹣A1B1C1是正三棱柱,AC=1,AA1=2,由此能求出平面BDC1分此棱柱两部分体积的比.解答: 解:设三棱柱ABC﹣A1B1C1是正三棱柱,AC=1,AA1=2,棱锥B﹣DACC1的体积为V1,由题意得V1=××1×=,又三棱柱ABC﹣A1B1C1的体积V=sh==,(V﹣V1):V1=1:1,∴平面BDC1分此棱柱两部分体积的比为1:1.故选:B.点评: 本题考查平面BDC1分此棱柱两部分体积的比的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.二、填空题:本大题共7小题,每小题4分,共28分11.已知a>0,b>0,a+2b=3,则+的最小值为.参考答案:.【分析】将1=(a+2b)代入得到+=(+)(a+2b)×,再利用基本不等式可求最小值.【解答】解:∵a>0,b>0,a+2b=3,∴+=(+)(a+2b)×=≥+=,(当且仅当=即a=,b=时取等号),∴+的最小值为;故答案为:.12.若一次函数有一个零点2,那么函数的零点是
______________
.参考答案:0和
13.若M(3,-2),N(-5,-1)且,则P点的坐标为__________.参考答案:分析:设点,表示出,代入,即可求出点坐标.详解:设点,则,又,,,故答案为.14.设的外接圆半径为,且已知,,则=________.参考答案:略15.在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,则弦长超过1的概率为.参考答案:考点:几何概型.专题:计算题;概率与统计.分析:找出满足条件弦长超过1,所对的圆心角,再代入几何概型计算公式求解.解答:解:在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,弦长等于1,所对的圆心角为,∴弦长超过1,所对的圆心角为,∴弦长超过1的概率为=.故答案为:.点评:本题考查的知识点是几何概型的意义,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.16.(5分)已知直线l垂直于直线3x+4y﹣2=0,且与两个坐标轴构成的三角形周长为5个单位长度,直线l的方程为
.参考答案:4x﹣3y±5=0考点: 直线的截距式方程.专题: 直线与圆.分析: 由题意设出所求直线方程4x﹣3y+b=0,求出直线在两坐标轴上的截距,然后由三角形的周长为5求得b的值得答案.解答: 已知直线3x+4y﹣2=0,斜率k=﹣,设所求方程是4x﹣3y+b=0(斜率互为负倒数),与x轴交点(﹣,0),与y轴交点(0,),与两轴构成的三角形周围长为5,∴+||+||=5,解得:b=±5.∴直线l的方程为:4x﹣3y±5=0.故答案为:4x﹣3y±5=0.点评: 本题考查了直线的截距式方程,考查了两直线垂直与斜率间的关系,是基础题.17.等差数列项和为,若m>1,则m=_____。参考答案:20略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知在中,所对边分别为,且(1)求大小;(2)若求的面积S的大小.参考答案:(1)
(2)略19.(本小题15分)已知函数的一条对称轴是.(1)
求;(2)
在给定坐标系画出在的图像;(3)
若,求的单调递减区间.参考答案:解:(1)
(2)
在的图像(3)若,单调递减区间为略20.(本小题15分)已知二次函数,且,(1)求(2)利用单调性的定义证明在为单调递增函数。(3)求在区间上的最值。参考答案:解:(1)设函数解析式
èè
略21.已知函数,(1)请在给定的同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学卫生检查内容及标准
- 地面标高定位线
- 第18课《我的白鸽》导学案
- 二零二五年社会福利机构护理人员职业发展与福利保障合同3篇
- 一年级家长培训会电子教案
- 执业医师考试心得
- 黑猪养殖发展前景分析
- 2024年浙江国际海运职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 二零二五年酒店客房预订系统经营权出兑合同3篇
- 2024年阆中市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 古诗文系列课件模板-清平调·其一
- 2024抗菌药物分级管理及临床合理应用考核试题及答案
- 桩身完整性考试试题及完整答案(包括低应变、钻芯、声波透射法)
- 储能系统的应急预案措施
- 大学生心理健康教育教学进度计划表
- 班主任育人故事(通用17篇)
- 类文阅读:一起长大的玩具(金波)
- 食品公司冷库岗位风险告知卡
- 岗位安全培训考试题参考答案
- 英文书信及信封格式详解(课堂)课件
- 星巴克的市场营销策划方案
评论
0/150
提交评论