下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市西京外国语学校2021-2022学年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,则EF的长为(
)A.
B.
C.
D.参考答案:C略2.命题“若x=2,则x2﹣3x+2=0”的逆否命题是()A.若x≠2,则x2﹣3x+2≠0 B.若x2﹣3x+2=0,则x=2C.若x2﹣3x+2≠0,则x≠2 D.若x≠2,则x2﹣3x+2=0参考答案:C【考点】四种命题间的逆否关系.【分析】根据命题“若p,则q”的逆否命题是“若¬q,则¬p”,写出它的逆否命题即可.【解答】解:命题“若x=2,则x2﹣3x+2=0”的逆否命题是“若x2﹣3x+2≠0,则x≠2”.故选:C.3.10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有(
)A.a>b>c
B.b>c>a
C.c>a>b
D.c>b>a参考答案:D4.把标号为1,2,3,4,5的五个小球全部放入标号为1,2,3,4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的方法种数是(
)
A、36
B、48
C、60
D、84参考答案:D
【考点】排列、组合的实际应用
【解答】解:第一类,第5球独占一盒,则有4种选择;如第5球独占第一盒,则剩下的三盒,先把第1球放旁边,就是2,3,4球放入2,3,4盒的错位排列,有2种选择,再把第1球分别放入2,3,4盒,有3种可能选择,于是此时有2×3=6种选择;如第1球独占一盒,有3种选择,剩下的2,3,4球放入两盒有2种选择,此时有2×3=6种选择,得到第5球独占一盒的选择有4×(6+6)=48种,
第二类,第5球不独占一盒,先放1﹣4号球,4个球的全不对应排列数是9;第二步放5号球:有4种选择;9×4=36,
根据分类计数原理得,不同的方法有36+48=84种.
故选:D.
【分析】由题意可以分两类,第一类第5球独占一盒,第二类,第5球不独占一盒,根据分类计数原理得到答案.
5.将函数图象上所有的点向左平移个单位长度,再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),则所得图象对应的函数解析式为(
)A. B.C. D.参考答案:A【分析】将图象上所有的点向左平行移动个单位长度得,再将所得图象上所有点的横坐标伸长到原来的倍得,再利用诱导公式得出结果.【详解】先将函数图象上所有的点向左平行移动个单位长度得再将所得图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得故选A【点睛】本题考查了正弦函数的图像变化和诱导公式,正确的掌握图像的平移变化和伸缩变化是解题的关键.6.某考察团对全国10大城市进行职工人均平均工资与居民人均消费进行统计调查,与具有相关关系,回归方程(单位:千元),若某城市居民消费水平为7.675,估计该城市消费额占人均工资收入的百分比为(
).66%
.72.3%
.67.3%
.83%参考答案:D故选答案D7.设是两条不同的直线,是两个不同的平面,下列命题正确的是(
)A.若则
B.若则C.若则
D.若则参考答案:C8.已知,,,若,则的夹角为(
)A.
B.
C.
D.参考答案:B9.某个命题与正整数有关,若当时该命题成立,那么可推得当时该命题也成立,现已知当时该命题不成立,那么可推得
A.当时,该命题不成立
B.当时,该命题成立C.当时,该命题成立
D.当时,该命题不成立参考答案:D10.已知为虚数单位,为实数,复数在复平面内对应的点为M,则“”是“点M在第四象限”的A.充分而不必要条件
B.必要而不充分条件C.充要条件
D.既不充分也不必要条件参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.阅读如图所示的程序框图,运行相应的程序,则输出n的值为
参考答案:412.当实数满足时,恒成立,则实数的取值范围是
.参考答案:13.已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________.参考答案:
3略14.已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值.参考答案:5﹣4【考点】圆与圆的位置关系及其判定.【分析】求出圆C1关于x轴的对称圆的圆心坐标A,以及半径,然后求解圆A与圆C2的圆心距减去两个圆的半径和,即可求出|PM|+|PN|的最小值.【解答】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:﹣4=5﹣4.故答案为:5﹣4.【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题.15.如果执行右面的程序框图,输入,那么输出的等于
。参考答案:略16.顶点在原点,对称轴是坐标轴,且焦点在直线2x+y﹣2=0上的抛物线方程是.参考答案:y2=4x或x2=8y【考点】抛物线的标准方程.【分析】求出已知直线与坐标轴的交点A和B,在焦点分别为A和B的情况下设出抛物线标准方程,对照抛物线焦点坐标的公式求待定系数,即可得到相应抛物线的方程.【解答】解:直线2x+y﹣2=0交x轴于点A(1,0),与y轴交于点B(0,2);①当抛物线的焦点在A点时,设方程为y2=2px,可得2p=4,∴抛物线方程为y2=4x;②当抛物线的焦点在B点时,设方程为x2=2py,可得2p=8,∴抛物线方程为x2=8y综上所述,抛物线方程为y2=4x或x2=8y.故答案为:y2=4x或x2=8y.17.已知函数在上是增函数,则实数a的取值范围是
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知等腰直角三角形,其中∠=90o,.点A、D分别是、的中点,现将△沿着边折起到△位置,使⊥,连结、.(1)求证:⊥;(2)求二面角的平面角的余弦值.参考答案:解:(1)∵点A、D分别是、的中点,∴.
∴∠=90o.
∴.∴,
------------2分∵,∴⊥平面.
-------------------------4分
∵平面,
∴.
-----6分(2)法1:取的中点,连结、.∵,
∴.
∵,
∴平面.∵平面,
∴.
∵
∴平面.∵平面,
∴.∴∠是二面角的平面角.
------------------10分在Rt△中,,在Rt△中,,.
--------------13分∴二面角的平面角的余弦值是.
---------------14分略19.设f(x)=,若0<a<1,试求:(1)f(a)+f(1-a)的值;(2)f()+f()+f()+…+f()的值..参考答案:(1)f(a)+f(1-a)=+=+=+=+==1.(2)f()+f()+f()+…+f()=[f()+f()]+[f()+f()]+…+[f()+f()]=500×1=500.20.如图,直棱柱中,,分别是,的中点,.
(Ⅰ)证明:;
(Ⅱ)求三棱锥的体积.参考答案:(Ⅰ)证明:由,是的中点,知,
(2分)又,故,∵,故
(6分)(Ⅱ)由(Ⅰ),∴
(8分)
(10分)又,所以
(12分)
【解析】略21.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含个小正方形.(Ⅰ)求出;(Ⅱ)利用合情推理的“归纳推理思想”归纳出与的关系式,(Ⅲ)根据你得到的关系式求的表达式.参考答案:(Ⅰ)f(1)=1,f(2)=5,f(3)=13,f(4)=25,………
2分
f(5)=25+4×4=41.
……
4分(Ⅱ)f(2)-f(1)=4=4×1.f(3)-f(2)=8=4×2,
f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,
…………6分由上式规律得出f(n+1)-f(n)=4n.……8分f(2)-f(1)=4×1,f(3)-f(2)=4×2,f(4)-f(3)=4×3,f(n-1)-f(n-2)=4·(n-2),f(n)-f(n-1)=4·(n-1)………10分f(n)-f(1)=4[1+2+…+(n-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌合作策略研究
- 2024年度财务共享服务中心国际合作合同
- 2024年度东莞市汽车租赁合同
- 2024年度光伏产品购销合同
- 解读环境风险评估与管理-第2篇
- 外研版八年级英语下册Module2过关训练课件
- 2024版科研实验承包合同:生物医药研究
- 《自动控制原理与应用》课件第7章
- 旅游社数字化转型
- 2024年度程力危险品厢式车定制生产及销售合同
- 班主任工作经验分享如何成为优秀的班主任
- 古诗文系列课件模板-山房春事二首
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 2011年认识实习报告
- 水务公司招聘笔试题库及答案
- 医疗垃圾分类与处理的人员培训与资质要求
- 审核的改进计划和措施
- 《旅游管理》专业调研报告
- 2024野生哺乳动物及栖息地调查技术规程
- 2024年中医药知识与技能竞赛题库附含答案
- 2023年6月大学生英语四级真题试卷及详细答案(三套)
评论
0/150
提交评论