下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市襄辉高级中学2023年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是(
)A.5
B.4
C.3
D.2参考答案:C略2.函数和都是减函数的区间是(
)A.
B.C.
D.参考答案:A3.函数的最大值是()参考答案:D4.
参考答案:D略5.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则的最小值是()A.- B.-2 C.- D.-1参考答案:A【分析】建立直角坐标系,设,得出关于的表达式,配方即可得出答案。【详解】以为轴,以边上的高为轴建立空间直角坐标系,如图则,设,则所以当时,取得最小值故选A.【点睛】本题考查向量的应用,解题的关键是设,得出关于的表达式,属于一般题。6.已知是非零向量,若,且,则与的夹角为(
)A.30° B.60° C.120° D.150°参考答案:D【分析】由得,这样可把且表示出来.【详解】∵,∴,,∴,∴,故选D.【点睛】本题考查向量的数量积,掌握数量积的定义是解题关键.7.直线与圆的位置关系是(
)A.相切;
B.直线过圆心;
C.直线不过圆心但与圆相交;D.相离。参考答案:B略8.已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.8参考答案:D【考点】平面向量的基本定理及其意义.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.【点评】本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.9.若指数函数在上是减函数,那么(
).A.
B.
C.
D.参考答案:B由于指数函数在上是减函数,则,得,故选.10.已知f(x)=,则f[f(-3)]等于A、0
B、π
C、π2
D、9
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.若函数(x∈R)的图像关于点M(1,2)中心对称,且存在反函数,若,则=___________。参考答案:解:函数(x∈R)的图像关于点M(1,2)中心对称。,即点A(4,0)在函数图像上,∴A关于M的对称点A'(-2,4)也在函数图像上。即,∴。12.函数的值域为
;参考答案:13.平面a∥平面b,过平面a、b外一点P引直线PAB分别交a、b于A、B两点,PA=6,AB=2,引直线PCD分别交a、b于C、D两点.已知BD=12,则AC的长等于_______参考答案:914.是偶函数,且在是减函数,则整数的值是
参考答案:215.已知,,m的最小值为:
,则m,n之间的大小关系为
.参考答案:4,m>n.【考点】7F:基本不等式.【分析】利用基本不等式的性质、指数函数的单调性即可得出.【解答】解:∵,∴m=a﹣2++2≥2+2=4,当且仅当a=4时取等号.∵,∴n<22=4.故答案为:4,m>n.16.(4分)下面有五个命题:①函数y=﹣sin4x+cos4x的最小正周期是π;②终边在y轴上的角的集合是{α|α=,k∈Z}};③把函数y=3sin(2x+)的图象向右平移得到y=3sin2x的图象;④函数y=sin(x﹣)在上是单调递减的;⑤直线y=a(a为常数)与正切曲线y=tanωx(ω>0)相交的相邻两点间的距离是.其中真命题的序号是
.参考答案:①③考点: 命题的真假判断与应用.专题: 三角函数的图像与性质.分析: ①,利用三角函数间的关系式与二倍角的余弦,化简可得函数y=cos2x,可知其最小正周期是π,可判断①;②,写出终边在y轴上的角的集合,可判断②;③,利用三角恒等变换把函数y=3sin(2x+)的图象向右平移,求得其解析式,可判断③;④,利用诱导公式化简得y=﹣cosx,再利用复合函数的单调性质,可判断④;⑤,利用正切函数的周期性质,可知直线y=a(a为常数)与正切曲线y=tanωx(ω>0)相交的相邻两点间的距离是,可判断⑤.解答: 解:对于①,因为y=﹣sin4x+cos4x=(sin2x+cos2x)(﹣sin2x+cos2x)=cos2x,其最小正周期是π,所以①正确;对于②,终边在y轴上的角的集合是{α|α=kπ+,k∈Z},故②错误;对于③,把函数y=3sin(2x+)的图象向右平移得到y=3sin=3sin2x的图象,故③正确;对于④,函数y=sin(x﹣)=﹣cosx在上是单调递增的,故④错误;对于⑤,直线y=a(a为常数)与正切曲线y=tanωx(ω>0)相交的相邻两点间的距离是,故⑤错误.综上所述,以上5个选项中,只有①③正确,故答案为:①③.点评: 本题考查命题的真假判断与应用,着重考查三角函数的恒等变换与图象变换,考查正弦函数、正切函数的周期性、余弦函数的单调性的应用,熟练掌握三角函数的图象与性质是关键,属于中档题.17._________.参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),且其相邻两对称轴之间的距离为π.(1)求函数f(x)的解析式;(2)设若sinα+f(α)=,α∈(0,π),求的值.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的化简求值;正弦函数的图象.【专题】转化思想;综合法;三角函数的求值.【分析】(1)根据函数的图象经过点(0,1),求得φ的值,再根据周期性求得ω,可得函数f(x)的解析式.(2)由条件求得sinα+cosα=,平方可得sinαcosα的值,从而求得sinα﹣cosα的值,再利用诱导公式化简要求的式子,可得结果.【解答】解:(1)根据函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)的图象经过点(0,1),可得sinφ=1,∴φ=,.∵其相邻两对称轴之间的距离为π,∴=π,求得ω=1,∴f(x)=sin(x+)=cosx.(2)∵sinα+f(α)=,α∈(0,π),即sinα+cosα=,平方可得sinαcosα═﹣,∴α为钝角,sinα﹣cosα==,∴====﹣.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,三角函数的化简求值,属于基础题.19.已知定义在R上的函数f(x)=的周期为,且对一切xR,都有f(x)
;(1)求函数f(x)的表达式;
(2)若g(x)=f(),求函数g(x)的单调增区间;参考答案:解:(1)∵,又周期
∴
∵对一切xR,都有f(x)
∴
解得:
ks5u∴的解析式为(2)∵∴g(x)的增区间是函数y=sin的减区间
∴由得g(x)的增区间为
(等价于略20.求函数的最大值和最小值。参考答案:解析:令得,,对称轴,当时,;当时,。21.(本题满分16分)设数列{an}满足,.(1),;(2)求数列{an}的通项公式;(3)设,求{bn}的前n项和Sn..参考答案:(1)(2)
(3)
22.已知数列{an}满足,.(1)证明数列是等比数列,并求数列{an}的通项公式;(2)令,求数列{bn}的前n项和Tn.参考答案:(1)见解析(2)【分析】(1)将式子合理变形,即可化成,从而证明是以首项为2,公比为2的等比数列,并利用等比数列通项公式求出的通项公式.(2)由数列的通项公式是由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗械加工厂合同
- 商业综合体泥水施工合同
- 机电安装工程师聘用合同样本
- 购买家具合同协议书范本(2篇)
- 外包合同安全责任条款
- 工商租赁协议书范本
- 集体房屋租赁协议书
- 防侵权合同范例
- 土豆合同范例
- 首尔房租中介转租合同范例
- 2023年春季高考英语试题(上海卷)
- 危险化学品目录2023
- 土壤稳定性评估
- Q2起重机司机实际操作技能考核作业指导书
- GB/T 37067-2018退化草地修复技术规范
- GB/T 23280-2009开式压力机精度
- GB/T 19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则
- 长方体和正方体的实践运用
- 第六课 掌握演绎推理方法课件 【备课精讲精研】 高中政治统编版选择性必修三逻辑与思维
- 综合管廊工程施工技术概述课件
- 《我的心儿怦怦跳》优秀课件
评论
0/150
提交评论