山西省临汾市仁文学校2021年高一数学文测试题含解析_第1页
山西省临汾市仁文学校2021年高一数学文测试题含解析_第2页
山西省临汾市仁文学校2021年高一数学文测试题含解析_第3页
山西省临汾市仁文学校2021年高一数学文测试题含解析_第4页
山西省临汾市仁文学校2021年高一数学文测试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市仁文学校2021年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.关于空间两条直线、和平面,下列命题正确的是 A.若,,则 B.若,,则 C.若,,则 D.若,,则参考答案:C2.集合的子集的个数有(

)A.2个

B.3个

C.4个

D.5个参考答案:C略3.

(

)A、

B、

C、

D、0参考答案:B4.一几何体的三视图如图,其中侧(左)视图和俯视图都是腰长为4的等腰直角三角形,正(主)视图为直角梯形,则此几何体体积的大小为(

)A.12

B.16

C.48

D.64参考答案:B5.等差数列中,则该数列的前项和(

)A.

B.

C.

D.参考答案:D6.(5分)已知函数的最大值为M,最小值为m,则的值为() A. B. C. D. 参考答案:C考点: 函数的值域.专题: 计算题.分析: 函数问题定义域优先,本题要先确定好自变量的取值范围;然后通过函数的单调性分别确定出m与n即可.解答: 根据题意,对于函数,有,所以当x=﹣1时,y取最大值,当x=﹣3或1时y取最小值m=2∴故选C.点评: 任何背景下,函数问题定义域优先,建函数模型是求解函数最值问题有效手段之一.7.若函数的图象(部分)如右图所示,则的取值是(

)A.

B.

C.

D.参考答案:C略8.在△ABC中,a、b、c分别为角A、B、C的对边,它的面积为,则角A等于(

)A.30° B.45° C.60° D.135°参考答案:D【分析】利用面积公式,借助余弦定理,即可容易求得结果.【详解】因为,且,故可得,即,又因为,故可得.故选:D.【点睛】本题考查三角形的面积公式以及余弦定理的应用,属综合基础题.9.经过点且与双曲线有共同渐近线的双曲线方程为A.

B.

C.

D.参考答案:B略10.设若且则下列结论中必成立的是(

)A、

B、

C、

D、参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.若函数,求x的取值区间参考答案:由,得,所以x的取值区间为。12.已知函数在定义域上是增函数,且则的取值范围是

。参考答案:(2,3)13.函数的定义域是

.参考答案:

解析:14.(3分)近几年,每年11月初,黄浦江上漂浮在大片的水葫芦,严重影响了黄浦江的水利、水质、航运和市容景观.为了解决这个环境问题,科研人员进行科研攻关.如图是科研人员在实验室池塘中观察水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,水葫芦的面积会超过30m2;③水葫芦从4m2蔓延到12m2只需1.5个月;④设水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3,则有t1+t2=t3;其中正确的说法有

.(请把正确的说法的序号都填在横线上).参考答案:①②④考点: 函数的图象.专题: 函数的性质及应用.分析: 根据其关系为指数函数,图象过(4,16)点,得到指数函数的底数为2,当t=5时,s=32>30,利用指对互化做出三个时间的值,结果相等,根据图形的变化趋势得出命题③错误.解答: ∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确,当t=5时,s=32>30,故②正确4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2,=log23,t3=log26,∴有t1+t2=t3,故④正确,综上可知①②④正确.故答案为:①②④.点评: 本题考查指数函数的变化趋势,解题的关键是题目中有所给的点,根据所给的点做出函数的解析式,从解析式上看出函数的性质.15.若角的终边经过点(-1,-2),则____________.参考答案:

16.函数,若,则实数的取值范围是

.参考答案:17.定义在区间上的函数的图象与的图象的交点为,过点作轴于点,直线与的图象交于点,则线段的长为_______

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量=(m,cos2x),=(sin2x,n),设函数f(x)=?,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象.若y=g(x)的图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调增区间.参考答案:【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】(Ⅰ)首先根据向量的数量积的坐标运算求得f(x)=msin2x+ncos2x,进一步根据图象经过的点求得:m和n的值.(Ⅱ)由(Ⅰ)得:=,f(x)向左平移φ个单位得到g(x)=2sin(2x+2Φ+)设g(x)的对称轴x=x0,最高点的坐标为:(x0,2)点(0,3)的距离的最小值为1,则:g(x)=2sin(2x+)=2cos2x,进一步求得单调区间.【解答】解:(Ⅰ)已知:,,则:=msin2x+ncos2x,y=f(x)的图象过点y=f(x)的图象过点(,)和点(,﹣2).则:解得:,即:m=,n=1(Ⅱ)由(Ⅰ)得:=,f(x)向左平移φ个单位得到:g(x)=2sin(2x+2Φ+),设g(x)的对称轴x=x0,最高点的坐标为:(x0,2)点(0,3)的距离的最小值为1,则:,则:g(0)=2,解得:Φ=,所以:g(x)=2sin(2x+)=2cos2x.令:﹣π+2kπ≤2x≤2kπ(k∈Z)则:单调递增区间为:[](k∈Z)故答案为:(Ⅰ)m=,n=1(Ⅱ)单调递增区间为:[](k∈Z)19.如图,定义在[﹣1,2]上的函数f(x)的图象为折线段ACB,(1)求函数f(x)的解析式;(2)请用数形结合的方法求不等式f(x)≥log2(x+1)的解集,不需要证明.参考答案:【考点】函数单调性的性质;函数解析式的求解及常用方法.【分析】(1)利用待定系数法求函数f(x)的解析式;(Ⅱ)根据函数的图象确定函数值对应的取值范围.【解答】解:(1)根据图象可知点A(﹣1,0),B(0,2),C(2,0),所以(2)根据(1)可得函数f(x)的图象经过点(1,1),而函数log2(x+1)也过点(1,1),函数log2(x+1)的图象可以由log2x左移1个单位而来,如图所示,所以根据图象可得不等式f(x)≥log2(x+1)的解集是(﹣1,1].20.已知线段AB的端点B的坐标为(4,0),端点A在圆x2+y2=1上运动,则线段AB的中点的轨迹方程为

参考答案:(x-2)2+y2=略21.已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.参考答案:(I)∵f(x)是R上的奇函数,∴f(0)=0,即=0,解得b=1. …………3分∴f(x)=.又∵f(1)=-f(-1),∴=-,解得a=2. …………6分(II)由(I)知f(x)==-+, …………7分由上式易知f(x)在R上为减函数, …………9分又∵f(x)是奇函数,∴不等式f(t2-2t)+f(2t2-k)<0?f(t2-2t)<-f(2t2-k)=f(-2t2+k).∵f(x)是R上的减函数,由上式推得t2-2t>-2t2+k.即对一切t∈R有3t2-2t-k>0,从而Δ=4+12k<0,解得k<-. …………14分22.(13分)设直线l的方程为(a+1)x+y+2﹣a=0(a∈R).(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.参考答案:考点: 直线的截距式方程;确定直线位置的几何要素;过两条直线交点的直线系方程.专题: 待定系数法.分析: (1)先求出直线l在两坐标轴上的截距,再利用l在两坐标轴上的截距相等建立方程,解方程求出a的值,从而得到所求的直线l方程.(2)把直线l的方程可化为y=﹣(a+1)x+a﹣2,由题意得,解不等式组求得a的范围.解答:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论