版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
y22qpy22qp2一、选题1.已知函数
yf(x)
的定义域为,下面三个命题,命题:存在
且
a
,对任意的
均有f()f(x)fa)
恒成立,命题:yf(x)1
在R是严格减函数,且
f)0
恒成立;命题
q2
:
yf(x)
在R是严格增函数,且存在x
使得
f(0
,则下列说法正确的是()A.、q都是p的分条件1
B.有q是的分条件1C.有
q2
是p的充分条件
.
q1
、
q2
都不是p的分条件2.已知
,条件:x
,条件
q:
1
,若p是的充分不必要条件,则实数
的取值不可能是()A.
B.C.D.3.”是“a
b
a
”的)A.充分不必要条件
B.要不充条件
C.充要条件
.不充分也不必要条件4.已知a,为实数,“a<”是2<b的)A.充分不必要条件C.要条件
B.要不充分条件.不充分又不必要条件5.下列说法正确的是()A.命“若x2,x”的命题“若x2,x”B.题
R0
0
”的定“
x
”C.若,则
y
”的否命题为假命题.椭圆xy
x2a
xy的离心率为,双曲线b
的渐近线方程为6.下列四个命题中,真命题的个数是)①命若
xlnx
,则
x
”;②命“且为,则有只有一个为命;③命所有幂函数
f
的图象经过点④命已知
,bR,4
是
a
的充分不必要条”.A.B.
C.D.7.若命题
,x0
m0
”为命,则实数的值范围是()A.
B.
,yxx,yxxC.
.
8.已知
x
,则“
x
”“
sin
12
”成的()件A.充分不必要C.要9.下列命题中真命题的是()
B.要不充分.不充分也不必要A.命题:若x
,
x
或
x
的逆否命题为:若
且x
,则x
B.am”是”的要条件C.为假命题,则均假命题.于实数,
p:xyq:x2或6,的要不充分条件10.
中,角,B,
C
的对边分别为a,,c,“
a
12
锐角”的()A.充分非必要条件C.分必要条件
B.要非充分条件.非充分又非必要条件11.件甲:关于的等
xx
的解集为空集,条件乙:
b
,则甲是乙的()A.必要不充分条件C.要条件
B.分不必要条件.不充分也不必要条件12.p2
,
x
,则p是q的)A.充分不必要条件
B.要不充条件
C.充要条件
.不充分也不必要条件二、填题13.知
:x
,
q:mxm
,若p是q的要不充分条件,则实数
m的取值范围________.14.出下列命题:①纯数的共轭复数是②若
z1
,则
z1
2
;③若zR
,则
z1
与
2
互为共轭复数;④若
z,与11
z2
互为共轭复.其中正确命题的序号_15.命“
0
,
x20
0
”为命题,则实数的取值范围______.16.间中,
ABC
的三个顶点到平面距相等是平
平面ABC”成的________条..直l垂于平面内无条”是“l的_______条件填充非必要或“必非充分或充或既充分也非必”).
qam,qam,p:18.知命题
:
x
,命题
q:
.若是的要条件,则的值是_________。19.下列命题:①若
,则
且
”的命题;②矩形的对角线相”否命题;③若m
,则mx22(m
的解集是”的逆命题;④若是理数,则a是无理数的否命题.其中正确命题的序号_20.出下列四个命题中:①命若x且y≥3则+≥5为命.②命若x-4+3=0,x”的逆否命题为:若x,则x-4x+3≠0.③“x>是|x>的充分不必要条件④关x的等-3|m的解集为R,则m≤4.其中所有正确命题的序号_____.三、解题21.知
mR
命题对
m恒立;命题
max
成立.()为命题,求的值范围;()时若命题和题有仅有一个为真,求m取值范围22.知命题p:数x满
2xx
,命题q:实数x满足x
(m
.()命题p为命题,求实数x的值围;()q是p的必要不充分条件,求实数的取值范围.23.命题p:数x满x22,题q:实满(),同为真命题,求实数的取值范围
.()
a0
且是的分不必要条件,求实数的值范围.24.知集合A
xx
B
m()集合A;()在①分不必要条件②必不充分条件③充条件这三个件中任选一个,补充在下面的问题中,若问题中的实数存,求出的取范围;若不存在,说明理由若A是xB成的__________条,判断实数m是否存在?(注如果选择多个条件分别解答,按第一个解答计)25.知
a
,命题函
x
在(0,为函数;命题:当
x
ppp时函数
f()
1
恒成立如为命题,为命题,求的范围.26.知命题
R
,不等式x
0”成是假命.()实数的值集合;()
qm
是集合的充分不要条件,求实数a的值范围【参考答案】***试卷处理标记,请不要除一选题1.解析:【分析】先由命题q成时,利用单调性和函数值为正,结合等式性质即推出命题p成立,再由命题
q2
成立时,利用单调性和函数零点,推出命题成,即得结.【详解】命题
成立,即
yf(x)
在上是严格减函数,且
f()0
恒成立,故取
a
时,对任意的
,xx,f
即f(a
,故
f(x)()f()
,即命题q可推出命题,qp的分条件;1命题成立,f(x)R是严格增函数,且存在使(x)00故取x时对任意的x,x,f0
,f()f()0
,f
,即命题可出命题,是充分条件;2故q、都是的分条.12故选:【点睛】本题解题关键在于分别由命题、q,用函数的单调性和值的分布特征去证明命题p,1即突破难点2.C解析:【分析】先解出命题所对应的集合,再将条件之间的关系转化为集合间的关系,即可得.【详解】
q1Bxaq1Bxa因为,件:x
x,件q:
,所以p对的集合
A
,对的集合
1x
又是的分不必要条件,所以A
B,当
时,集合
xx当
a>0
时,集合x
1a
时满足
1a
即
0
;1当a时集合B
,满足题意;所以实数a的取值围为
.所以实数的值不可能是2.故选:【点睛】关键点点睛:解决本题的关键是把命题间的关系转化为集合间的关系及分类求解命题对应的集合3.C解析:【分析】构造函数【详解】
f(x)x
利用单调性判断设
f()x
,
fx
,所以
f(x)
为增函数,由于a,以
f()
,所以a
b
a
;反之
成立,则有
f()f(b)
,所以.所以是充要条件,故选C.【点睛】本题主要考查充要条件的判定,明确两者之间的推出关系是判定的关.4.C解析:【分析】利用函数
yx
,
y
x
的单调性,结合充分条件和必要条件的性质判断即.【详解】函数
在上调递增,则a
函数
y
x
在R
上单调递增,则a2
则a
3
3
”是“
2
”的要件
2qq22qq2故选:【点睛】本题主要考查了判断充要条件,涉及了利用函数的单调性比较大小,属于中档.5.D解析:【分析】利用四种命题的逆否判断正误,命题的否定判断的误根据充分条件与必要条件判断C的误;根据椭圆的心率可得ab系,进而求得双曲线的渐近线方程;【详解】解:对于A,命题若x
,
”的命题为:若
,
”,误;对于,题“
R
,使得
”的定是“
R
均有
”,B错误;对于
C
,因为原命题为真命题,故其逆否命题也为真命题,故错;ca3xy对,为,所以双曲线2ab
的渐近线方程为1y2
,故正.故选:【点睛】本题考查命题的真假的判断与应用,考查四种命题的逆否关系,命题的否定以及充要条件的判断,是基本知识的综合应用.6.C解析:【分析】①令
f
,研究其单调性判断②据且构的复合命题定义判.③根据幂函数
f
的图象判断由
2b
,判断充分性,取特殊值
a
判断必要性【详解】①令
ff
1x
,所以
f所以
f
,所以,故正确.②若且为,则都为真命题,故错误③因所有幂函数
f
的图象经过点④因ab
2
2
b
2
2
,所以
a
,故充分性成立,当a
时,推不出a
2
2,所以不必,故正.故选:
【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础.7.A解析:【分析】因为原命题是假命题,其否定为真命题,问题可转化为恒成立,故由即可求出的取值范围.
0
,
20
mx0【详解】因为命题
,x20
mx0
”为命题,故其否定:
0
,
00
”为命,故
2
4(2m
2
m解得
,故实数的取值范围是[2,6].故选:【点睛】本题原命题是存在性命题且为假命题,它的否定是全称命题且为真命题,进而将问题转化为恒成立处理,采用正难则反的思想进行求解,同时考查命题的等价性和转化的思想.8.B解析:【分析】求出不等式
sin
12
在
上的解,然后利用集合的包含关系即可得出结.【详解】x
,解不等式
sin
1,得2
,
,因此,”是
12
”成的必要不充分条.故选:【点睛】本题考查必要不充分条件的判断,涉及正弦不等式的求解,考查推理能力与运算求解能力,属于中等题9.A解析:【分析】A.根四种命题的结构形式转化来判.B.利特殊值法,当
时,逆命题不成.若为命题,由结“一则”来断D用等价命题来判.
qq222【详解】命题:若x,
x
或
x
的逆否命题为:若
且x
,则
,故正确;若2bm2则m,得反之,m,2bm不成立,故错误;若为命题,则,中少有一个为假命题,故错;对于实数,,:
xy
,:2或,x2且,得y,p可,之由推到,则p是的分不必要条件,故D错.故选:【点睛】本题主要考查命题的转化及关系以及逻辑条件,还考查了理解辨析的能力,属于基础10.解析:【分析】由题知
a
1ba22
2
2
,结合余弦定可出A为锐角反无法推因此
a
12
锐角的分非必要条件【详解】①在,
a
12
则
a
2
14
,即4a
2
b)
2
2
2
)
,a
2
2
2
,
222
A为角即
a
12
A为角,②若A
为锐角则cosA
b
2
2
2
,即
2
2
a
2
,无法推出
2
2
a
2
,所以
为锐角
“
a
12
综上所“
a
12
为锐角的充分非必要条,故选【点睛】
本题考查了充分必要条件的判,合了基本不等式及余弦定理等相关知综合性较强11.解析:【分析】分别求出条件甲、乙所对应的【详解】
a
的关系式,比较两个关系式所表示的图形,可得出结.由题意,当
时,不等式sin
xcosx
的解集为空集,当,不为0时asinx
a
2
2
sin
,
a
a2
.因为a2
的解集为空集,所以
2
2
,即a
2
2
.如下图,2表以原点为圆心,半径为1的圆及其内部,接正方形及其内部,所以甲是乙的必要不充分条.故答案为:
b
表示为圆内【点睛】本题考查充分性与必要性的判断,考查三角函数的恒等变换,考查不等式表示的平面区域,考查学生的计算能力与推理能力,属于中档.12.解析:【分析】先化简两个命题,再根据充分必要条件的定义分析判断得.【详解】由题得
p:
,
q:
,设
,所以B是A的子集,所以p是的必要非充分条.故选:【点睛】本题主要考查指数对数不等式的解法,考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水.二、填题
m13.【分析】解一元二次不等式求得根据是的必要不充分条件求得的取值范围【详解】由解得所以由于是的必要不充分条件所以解得所以的取值范围是故答案为:【点睛】本小题主要考查根据必要不充分条件求参数考查一元二次不解析:
【分析】解一元二次不等式求得,根据是的必要不充分条件求得的值范围【详解】由
x
,解得
3
.所以
:
.由于是的必要不充分条件,以
mm
,解得
.所以的值范围是故答案为:
【点睛】本小题主要考查根据必要不充分条件求参数,考查一元二次不等式的解法,属于中档14.④分析】对于根据纯虚数和共轭复数的定义可知正确;对于由得出再由复数相等和共轭复数的定义可知不一定有可知不正确;对于则可能均为实数但不一定相等或与的虚部互为相反数但实部不一定相等即可判断出解析:【分析】对于,据纯虚数和共轭复数的定义可知正确;对②,
z得出z11
z2
,再由复数相等和共轭复数的定义,可知不一定有
1
2
,可知不确;对③,zR
,则
zz1
2
可能均为实数,但不一定相等,或
z1
与
z2
的虚部互为相反数,但实部不一定相等,,即可判断③;④由
z得11
z,与z互共轭复数,④21正确;综合得出答案【详解】解:根据纯虚数和共轭复数的定义,可知命显然正确;对于,
z1
,只能得到
z1
z2
,不一定有
1
,所以命题不确;对于,zR
,则
zz1
2
可能均为实数,但不一定相等,或z与z的虚部互为相反数,但实部不一定相等,12则z与z不一定互为共轭复数,所以命③正确;12
..由
z得z11
z则与互共轭复数,可知命④正;22所以正确命题的序号①④.故答案为:④.【点睛】本题考查复数相关命题的真假,考查对复数的概念中实数、虚数、纯虚数以及相等复数和共轭复数的特征的理解,属于基础.15.【分析】由原命题为假命题则命题的否定为真命题再根据一元二次不等式恒成立求出参数的取值范围【详解】解:由题意命题为假命题则为真命题令则对恒成立因为的对称轴为则在上单调递增则只需即可即解得即故答案为:【解析
【分析】由原命题为假命题,则命题的否定为真命题,再根据一元二次不等式恒成立求出参数的取值范围【详解】解:由题意,命“
,
x200
”为命题,则
,x
为命题,令
g
,则对
,g
恒成立,因为
的对称轴为
x
32
,则
在
x则只需
g
即可,即
4
,解得
a
,即
a
.故答案为:
【点睛】本题考查一元二次不等式恒成立问题,属于中档.16.必要不充分【解析】【分析】根ABC与平面位置关系判定充要关系【详解】当ABC不在平面同侧时ABC到平面距离也可相等即的三个顶点到平面距离相等时平面与平面ABC可相交所以充分性不成立当平面平面ABC解析:要不充分【解析】【分析】根据与面位关系判定充要关.【详解】当A,B,C不在平面同侧时,A,B,C到平面离也可相等,即的个顶点到平面
距离相等时,平面与面可交,所以充分性成立,当平面
平面时,A,B,C到平面距必相等,所以必要性成立,故答案为:必要不充分【点睛】
q本题考查线面位置关系以及充要关系判,查基本分析判断能力,属基础.17.必要不充分【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论【详解】根据线面垂直的定义可知直线与平面内任意无数条直线都垂直当直线与平面内无数条直线都垂直时直线与平面垂直不一定成立∴直解析:要不充分【分析】根据线面垂直的定义以及充分条件和必要条件的定义即可得到结论.【详解】根据线面垂直的定义可知,直线
l
与平面内任意无数条直线都垂,当直线
l
与平面无数条直线都垂直时直线
l
与平面垂直不一定成立,“直
l
与平面
内无数条直线都垂直是直
l
与平面垂的要不充分条件.故答案为必要不充分【点睛】本题主要考查充分条件和必要条件的判断,利用线面垂直的定义是解决本题的关键,注意“无条和任条的别.18.【分析】求出命题的等价条件利用充分条件和必要条件的定义得出根据集合的运算即可求解【详解】由题意命题解得集合设命题对应的集合若是的充要条件则集合只有时集合此时成立所以【点睛】本题主要考查了充分条件和必解析:1【分析】求出命题的等价条件,利用充分条件和必要条件的定义,得出B,据集合运算,即可求解.【详解】由题意,命题
:
x
,解得集合
Ax
,设命题
:
,对应的集合B,若是的要条件,则集合B,只有时集合
B|1}
,此时B成,所以.【点睛】本题主要考查了充分条件和必要条件的应用,其中解答中利用充分条件和必要条件的定义,求出命题的等价条件是解答的关键,着重考查了推理与运算能力,属于基础题.19.③④解析】对于若则的逆命题为若则故逆命题为真命题则否命题也为真故①正确;对于矩形的对角线相等的逆命题为对角线相等的四边形是矩形为假命题故其逆命题也为假故②误;对于③逆命题为:若的解集是则解析:
mm【解析】对于若
xy0,则x
”的命题为若
且,则xy0
”故命题为真命题,则否命题也为真,正确;对②矩形的对角线相的逆命题为对角线相等的四边形是矩形为命题,故其逆命题也为假,错;对于其命题为:若
mx
的解集是R,m,该不等式解集为时时不合题意,2.
解得1,故逆命题为真,即③正;对④,原题为真,故逆否命题也为真,正,即正确的序号为①③,故答案①③④.20.③④【分析】命题的判断一一进行判断即可对于显然为假命题;对于②逆否命题条件和结论都否定正确;对于若x>1则|x|>0若x|>0则x不一定大于1;对于④x)=|x+1|+|x﹣表示数轴解析:③【分析】命题的判断,一一进行判断即可.对①,然为假命题;对②,否命题,条件和结论都否定,正确;对于,x>,则|>.|x|0,则x不一定大于;对于④,f()=|xx3|表示数轴上点x到1和3的距离之和.【详解】对于,然为假命题;对于,否命题,条件和结论都否定,正确;对于,x>,则>.若||>,则x不定大于1;对于,()=|x﹣表示数轴上点x到﹣和的离之和最为4,所m.故答案②③④.【点睛】本题考查命题真假的判断,综合考查了不等式性质及绝对值的意义,属于中档题.三、解题21.1)
;()
.【分析】()m,即,可解出实数的取值范围;min()求出命q为命题时实数m的值范围,再分析出命题、q中个是真命题,一个是假命题,即可的得出实数的取值范.【详解】()对任意
m
2
m恒立,
min
2
,即m即m
2
,得1,
,x,xx因此,若为命题时,实数的值围是
.()
,存在x
成,
,命题为时,m1.因为p、中个是真命题,一个是命题.当真假,则m
,解得2;m当假真,
,即m.综上所述,m的值范围为
.【点睛】本题考查利用命题的真假、利用复合命题的真假求参数问题,解题的关键就是要确定简单命题的真假,考查分类讨论思想的应用,属于中等.22.1)
x
【分析】()分式不式,移项,通分,即可求解;()不等式x
2
(m
,求出命题真时,x的值范围,根据是p的要不充分条件转化为集合的关系,即可求.【详解】()命题p为命题,知
2xx,化为,xx解得
x
或所以实数x的值范围是
x()题:由
xmx2
,得
[xmx,得xm或
.设
Ax2},x或x因为q是必要不充分条件所以
mm2
,解得
m
,实数的取值范围为
.【点睛】本题以命题为背景,考查分式不等式以及一元二次不等式的求解,考查必要不充分条件求参数,属于中档.23.1)
【分析】()出命题为真时变量的值范围,然后求交集即可;()样求出题为真时变量的值集合,由充分不必要条件得出集合的含关
,x,xp,系,从而得参数取值范围.【详解】命题p:数x满x2ax,题q:数满
x
.(),题:实数满
解得
x
.命题:实数x满
x
,解得2.若同真命题,则x
,解得
2
.实x的取值范围()题:数满足a,化为:a3a.
,0,若
a0
,且是的分比必要条,则是的充分比必要条件,
a
,解得:
43
.实数a的值范围是.【点睛】本题考查由复合命题真假及充分必要条件求参数范围.解题关键把问题转化为集合间的包含关系.24.1)
案见解析.【分析】()据一元次不等式的解法求解即可得答案;():充分不必要条件,则集合A是集合B的真子集,再根据集合关系求解即可;选:必不充分条件,则集合B是合A的子集,根据集合关系求解即可;选:充条件,则B,根据集合关系求解即可;【详解】解:()等
xx
不等式
2
2
,由于
,故
x():充分不必要条件由()
A因为若xA是x成立的充分不必要条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《计量管理系统论》课件
- 腰椎血管瘤的健康宣教
- 羟磷灰石沉积病的临床护理
- 踝部骨折的健康宣教
- 手部湿疹的临床护理
- 2021年功率器件设计行业新洁能分析报告
- 《电工电子技术 》课件-第4章 变压器及应用
- 孕期牙痛的健康宣教
- 安全生产培训课件金能
- 《支付宝相关功能》课件
- 剧本杀范本完整版
- 第一章 管道安装-定额
- 国家开放大学2021年计算机应用基础终结性考试试题附答案
- 国家开放大学《财务管理》章节随学随练参考答案
- 服装工艺(各工序)单价表
- 年产4万吨铝板生产项目建议书写作模板-立项申批
- 《搬家择日入宅择日》书稿
- 银行二月份事后监督情况通报
- 李正中,固体理论,课后习题答案
- 生本课堂教学反思
- 留守儿童成长档案(精编版)
评论
0/150
提交评论