版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.42.当输入的实数时,执行如图所示的程序框图,则输出的不小于103的概率是()A. B. C. D.3.已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为()A.2020 B.20l9 C.2018 D.20174.若复数满足,则()A. B. C. D.5.函数的最小正周期是,则其图象向左平移个单位长度后得到的函数的一条对称轴是()A. B. C. D.6.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立7.()A. B. C. D.8.执行如图所示的程序框图,输出的结果为()A. B. C. D.9.已知满足,,,则在上的投影为()A. B. C. D.210.的展开式中,含项的系数为()A. B. C. D.11.已知为一条直线,为两个不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知直三棱柱中,,,,则异面直线与所成的角的正弦值为().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在处的切线方程是_________.14.若为假,则实数的取值范围为__________.15.已知数列的前项和为,且满足,则______16.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.18.(12分)已知函数f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范围;(Ⅱ)若a<0,对∀x,y∈-∞,a,都有不等式f(x)≤(y+2020)+19.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.20.(12分)每年的寒冷天气都会带热“御寒经济”,以交通业为例,当天气太冷时,不少人都会选择利用手机上的打车软件在网上预约出租车出行,出租车公司的订单数就会增加.下表是某出租车公司从出租车的订单数据中抽取的5天的日平均气温(单位:℃)与网上预约出租车订单数(单位:份);日平均气温(℃)642网上预约订单数100135150185210(1)经数据分析,一天内平均气温与该出租车公司网约订单数(份)成线性相关关系,试建立关于的回归方程,并预测日平均气温为时,该出租车公司的网约订单数;(2)天气预报未来5天有3天日平均气温不高于,若把这5天的预测数据当成真实的数据,根据表格数据,则从这5天中任意选取2天,求恰有1天网约订单数不低于210份的概率.附:回归直线的斜率和截距的最小二乘法估计分别为:21.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.2、A【解析】
根据循环结构的运行,直至不满足条件退出循环体,求出的范围,利用几何概型概率公式,即可求出结论.【详解】程序框图共运行3次,输出的的范围是,所以输出的不小于103的概率为.故选:A.【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.3、B【解析】
根据题意计算,,,计算,,,得到答案.【详解】是等差数列的前项和,若,故,,,,故,当时,,,,,当时,,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.4、B【解析】
由题意得,,求解即可.【详解】因为,所以.故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.5、D【解析】
由三角函数的周期可得,由函数图像的变换可得,平移后得到函数解析式为,再求其对称轴方程即可.【详解】解:函数的最小正周期是,则函数,经过平移后得到函数解析式为,由,得,当时,.故选D.【点睛】本题考查了正弦函数图像的性质及函数图像的平移变换,属基础题.6、A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.7、A【解析】
分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.8、D【解析】
由程序框图确定程序功能后可得出结论.【详解】执行该程序可得.故选:D.【点睛】本题考查程序框图.解题可模拟程序运行,观察变量值的变化,然后可得结论,也可以由程序框图确定程序功能,然后求解.9、A【解析】
根据向量投影的定义,即可求解.【详解】在上的投影为.故选:A【点睛】本题考查向量的投影,属于基础题.10、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.11、D【解析】A.若,则或,故A错误;B.若,则或故B错误;C.若,则或,或与相交;D.若,则,正确.故选D.12、C【解析】
设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用导数的运算法则求出导函数,再利用导数的几何意义即可求解.【详解】求导得,所以,所以切线方程为故答案为:【点睛】本题考查了基本初等函数的导数、导数的运算法则以及导数的几何意义,属于基础题.14、【解析】
由为假,可知为真,所以对任意实数恒成立,求出的最小值,令即可.【详解】因为为假,则其否定为真,即为真,所以对任意实数恒成立,所以.又,当且仅当,即时,等号成立,所以.故答案为:.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.15、【解析】
对题目所给等式进行赋值,由此求得的表达式,判断出数列是等比数列,由此求得的值.【详解】解:,可得时,,时,,又,两式相减可得,即,上式对也成立,可得数列是首项为1,公比为的等比数列,可得.【点睛】本小题主要考查已知求,考查等比数列前项和公式,属于中档题.16、1元【解析】设分别生产甲乙两种产品为桶,桶,利润为元
则根据题意可得目标函数,作出可行域,如图所示作直线然后把直线向可行域平移,
由图象知当直线经过时,目标函数的截距最大,此时最大,
由可得,即此时最大,
即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1.【点睛】本题考查用线性规划知识求利润的最大值,根据条件建立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面,则②,由①②知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,,,,所以,,,设,,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.18、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由题意不等式化为|1-2a|-|1-a|>1,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为[f(x)]max≤[|y+2020|+|y-a|]min,分别求出【详解】(Ⅰ)由题意知,f(1)=|1-2a|-|1-a|>1,若a≤12,则不等式化为1-2a-1+a>1,解得若12<a<1,则不等式化为2a-1-(1-a)>1,解得若a≥1,则不等式化为2a-1+1-a>1,解得a>1,综上所述,a的取值范围是(-∞,-1)∪(1,+∞);(Ⅱ)由题意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max当x∈(-∞,a]时,|x-2a|-|x-a|≤-a,[f(x)]max因为|y+2020|+|y-a|≥|a+2020|,所以当(y+2020)(y-a)≤0时,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,结合a<0,所以a的取值范围是[-1010,0).【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题.含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.19、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,,,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值.试题解析:(1)设交于点,过作,垂足为,在中,,,在中,,所以S,(2)要使侧面积最大,由(1)得:令,所以得,由得:当时,,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值,此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为.20、(1),232;(2)【解析】
(1)根据公式代入求解;(2)先列出基本事件空间,再列出要求的事件,最后求概率即可.【详解】解:(1)由表格可求出代入公式求出,所以,所以当时,.所以可预测日平均气温为时该出租车公司的网约订单数约为232份.(2)记这5天中气温不高于的三天分别为,另外两天分别记为,则在这5天中任意选取2天有,共10个基本事件,其中恰有1天网约订单数不低于210份的有,共6个基本事件,所以所求概率,即恰有1天网约订单数不低于20份的概率为.【点睛】考查线性回归系数的求法以及
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信息交流安全
- 2024房产出租协议书合同
- 2024房屋装修合同的格式
- 2024平面广告合同范本
- 2024至2030年中国连身围裙行业投资前景及策略咨询研究报告
- 2024年聚氨酯橡胶项目综合评估报告
- 2024至2030年中国预付费磁卡水表数据监测研究报告
- 2024年衣架衣夹项目评估分析报告
- 2024至2030年中国试管干燥箱数据监测研究报告
- 2024至2030年中国组装式木屋行业投资前景及策略咨询研究报告
- 广东省深圳市2023-2024学年高一上学期语文期末考试试卷(含答案)
- 一年级数学20以内加减法口算混合练习题
- 河北省保定市定州市2024-2025学年九年级上学期期中考试化学试卷
- 【工程法规】王欣 冲刺串讲班课件 11-第5章-知识点1-合同的订立-知识点2-合同的效力
- 矿山安全生产培训
- 2024年人教部编版语文六年级上册第五单元测试题附答案
- 大疆在线测评题答案
- 承包酒店鲜榨果汁合同范本
- 牙体牙髓病学实践智慧树知到答案2024年浙江中医药大学
- TCECA-G 0307-2024 数字化碳管理平台 建设评价指南
- 医疗行业智能化医疗设备维修与保养方案
评论
0/150
提交评论