版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省池州市坦埠中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 右图是某赛季甲、乙两名篮球运动员每场比赛得分茎叶图,则在这几场比赛得分中甲的中位数与乙的众数之和是(
)A50B41C51
D
61.5参考答案:略2.已知全集U={0,1,2,3,4},集合A={1,2},B={0,2,4},则(?UA)∩B等于()A.{0,4} B.{0,3,4} C.{0,2,3,4} D.{2}参考答案:A【考点】交、并、补集的混合运算.【分析】根据集合的交集和补集的定义进行计算即可.【解答】解:∵?UA={0,3,4},∴(?UA)∩B={0,4},故选:A【点评】本题主要考查集合的基本运算,根据集合的交集和补集的定义是解决本题的关键.3.下列从P到Q的各对应关系f中,不是映射的是()A.P=N,Q=N*,f:x→|x-8|B.P={1,2,3,4,5,6},Q={-4,-3,0,5,12},f:x→x(x-4)C.P=N*,Q={-1,1},f:x→(-1)xD.P=Z,Q={有理数},f:x→x2参考答案:A4.定义运算为:如,则函数的值域为A.R B.(0,1] C.(0,+∞)
D.[1,+∞)参考答案:B5.下列函数中,既是偶函数又在(0,+∞)上单调递增的是()A. B.C. D.参考答案:B【分析】对选项逐一分析函数的奇偶性以及在上的单调性,由此得出正确选项.【详解】对于A选项,函数为非奇非偶函数.对于B选项,既是偶函数又在上单调递增.对于C选项,函数是偶函数,但在上递减.对于D选项,函数是非奇非偶函数.故本小题选B.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.6.已知集合,,则A∪B=(
)A. B.C. D.参考答案:D【分析】根据集合的并集的运算,准确运算,即可求解.【详解】由题意,集合,,则.故选:D.【点睛】本题主要考查了集合的并集的运算,其中解答中熟记集合的并集概念及运算是解答的关键,着重考查了推理与运算能力,属于基础题.7.的值(
)A.小于
B.大于
C.等于
D.不存在参考答案:A略8.若函数在上是增函数,则实数的取值范围是
(
)A.
B.或
C.
D.参考答案:A略9.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是(
)A. B. C.[3,+∞) D.(0,3]参考答案:A【考点】函数的值域;集合的包含关系判断及应用.【专题】计算题;压轴题.【分析】先求出两个函数在[﹣1,2]上的值域分别为A、B,再根据对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),集合B是集合A的子集,并列出不等式,解此不等式组即可求得实数a的取值范围,注意条件a>0.【解答】解:设f(x)=x2﹣2x,g(x)=ax+2(a>0),在[﹣1,2]上的值域分别为A、B,由题意可知:A=[﹣1,3],B=[﹣a+2,2a+2]∴∴a≤又∵a>0,∴0<a≤故选:A【点评】此题是个中档题.考查函数的值域,难点是题意的理解与转化,体现了转化的思想.同时也考查了同学们观察、推理以及创造性地分析问题、解决问题的能力,10.已知集合A={x|﹣1≤x<3},B={2<x≤5},则A∩B=()A.(2,3) B.[2,3] C.(﹣1,5) D.[﹣1,5]参考答案:A【考点】交集及其运算.【分析】根据交集的定义求出A、B的交集即可.【解答】解:∵集合A={x|﹣1≤x<3},B={x|2<x≤5},则A∩B=(2,3),故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.已知,,则=
.参考答案:112.已知是函数在内的两个零点,则
.参考答案: 13.已知函数,则f(x)的定义域是.参考答案:(﹣,﹣)∪(,)【考点】33:函数的定义域及其求法.【分析】根据三角函数以及二次根式的性质建立不等关系,解正切函数的不等式即可求出所求.【解答】解:∵函数y=lg(tanx﹣1)+,∴tanx﹣1>0,且9﹣x2≥0,∴,∴x∈(﹣,﹣)∪(,)故答案为:(﹣,﹣)∪(,).14.数据x1,x2,…,x8的平均数为6,标准差为2,则数据2x1-6,2x2-6,…,2x8-6的平均数为__________,方差为________.参考答案:6_,16_略15.若将函数y=sin(2x+)的图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个长度单位,则所得的函数图象对应的解析式为___.参考答案:16.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是
.参考答案:(﹣1,3)考点: 函数奇偶性的性质;函数单调性的性质.专题: 函数的性质及应用.分析: 根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.解答: ∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)点评: 本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.17.已知Sn是数列{an}的前n项和,若Sn=2n﹣1,则a1=_________.参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,a,b,c分别为内角A,B,C的对边,且(1)求A的大小;(2)求的最大值.参考答案:(1)A=120°
(2)119.二次函数f(x)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.参考答案:【考点】二次函数的性质.【分析】(1)先设f(x)=ax2+bx+c,在利用f(0)=1求c,再利用两方程相等对应项系数相等求a,b即可.(2)转化为x2﹣3x+1﹣m>0在[﹣1,1]上恒成立问题,找其在[﹣1,1]上的最小值让其大于0即可.【解答】解:(1)设f(x)=ax2+bx+c,由f(0)=1得c=1,故f(x)=ax2+bx+1.因为f(x+1)﹣f(x)=2x,所以a(x+1)2+b(x+1)+1﹣(ax2+bx+1)=2x.即2ax+a+b=2x,所以,∴,所以f(x)=x2﹣x+1(2)由题意得x2﹣x+1>2x+m在[﹣1,1]上恒成立.即x2﹣3x+1﹣m>0在[﹣1,1]上恒成立.设g(x)=x2﹣3x+1﹣m,其图象的对称轴为直线,所以g(x)在[﹣1,1]上递减.故只需最小值g(1)>0,即12﹣3×1+1﹣m>0,解得m<﹣1.【点评】本题考查了二次函数解析式的求法.二次函数解析式的确定,应视具体问题,灵活的选用其形式,再根据题设条件列方程组,即运用待定系数法来求解.在具体问题中,常常会与图象的平移,对称,函数的周期性,奇偶性等知识有机的结合在一起.20.已知函数的部分图象如图所示(1)将函数的图象保持纵坐标不变,横坐标向右平移个单位后得到函数的图像,求函数的最大值及最小正周期;(2)求使的的取值范围的集合。参考答案:(1)由图知,所以
(2),略21.已知函数f(x)=sin2x+sinxcosx+2cos2x,xR.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?参考答案:(1)f(x)=
=
=sin(2x+.
∴f(x)的最小正周期T==π.
由题意得2kπ-≤2x+≤2kπ+,k∈Z,
∴f(x)的单调增区间为[kπ-,kπ+],k∈Z.
(2)先把y=sin2x图象上所有的点向左平移个单位长度,得到y=sin(2x+)的图象,再把所得图象上所有的点向上平移个单位年度,就得到y=sin(2x+)+的图象.
略22.(12分)计算:log3+lg25+lg4++log23?log34;设集合A={x|≤2﹣x≤4},B={x|m﹣1<x<2m+1}.若A∪B=A,求m的取值范围.参考答案:考点: 对数的运算性质;并集及其运算.专题: 函数的性质及应用;集合.分析: (1)根据对数的运算性质计算即可,(2)根据集合的运算,求出a范围,解答:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 采购合同的分类方法及技巧解析3篇
- 采购合同的框架协议3篇
- 采购合同和销售合同的履行监管3篇
- 2024年标准简易门面租赁合同范本版B版
- 采购合同的分类及适用领域解析3篇
- 采购合同预付款的税务筹划方法3篇
- 采购合同设备售后服务3篇
- 采购合同管理的策略分享3篇
- 采购框架合同方案3篇
- 采购合同会审制度的案例分享3篇
- 设计中的重点、难点及关键技术问题的把握控制及相应措施
- 新时代高校马克思主义学院内涵式发展的现状和现实进路
- 2024以租代购合同
- 湖南省益阳市2023-2024学年高二上学期1月期末物理试题 含答案
- 2019水电工程探地雷达探测技术规程
- 灾难事故避险自救-终结性考核-国开(SC)-参考资料
- JP柜技术规范可编辑范本
- 有关中医康复治疗课件
- 江苏省苏州市(2024年-2025年小学五年级语文)统编版期末考试((上下)学期)试卷及答案
- 期末复习试题(试题)-2024-2025学年四年级上册数学人教版
- 第六单元(整体教学课件)七年级语文上册大单元教学名师备课系列(统编版2024)
评论
0/150
提交评论