2022山西省吕梁市英才中学高二数学文测试题含解析_第1页
2022山西省吕梁市英才中学高二数学文测试题含解析_第2页
2022山西省吕梁市英才中学高二数学文测试题含解析_第3页
2022山西省吕梁市英才中学高二数学文测试题含解析_第4页
2022山西省吕梁市英才中学高二数学文测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022山西省吕梁市英才中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知、为双曲线C:的左、右焦点,点P在C上,∠P=,则P到x轴的距离为

(A)

(B)

(C)

(D)参考答案:B2.若球的半径为,则这个球的内接正方体的全面积等于(

)(A)

(B)

(C)

(D)参考答案:A3.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为()A. B.(4+π) C. D.参考答案:D【考点】由三视图求面积、体积.【专题】计算题.【分析】几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,做出圆锥的高,根据圆锥和圆柱的体积公式得到结果.【解答】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,∴几何体的体积是=,故选D.【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察.4.已知点A(1,4)在直线上,则m+n的最小值为

(

)A.2 B.8

C.9

D.10参考答案:C5.我们把由半椭圆与半椭圆合成的曲线称作“果圆”(其中).如图,设点是相应椭圆的焦点,A1、A2和B1、B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角,则a,b的值分别为(

)

A.

B.

C.5,3

D.5,4参考答案:A【知识点】椭圆因为△F0F1F2是边长为1的等边三角形,,又

所以,a,b的值分别为

故答案为:A6.8.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=()A. B. C. D.n2+n参考答案:A考点;等差数列的前n项和;等比数列的性质.专题;计算题.分析;设数列{an}的公差为d,由题意得(2+2d)2=2?(2+5d),解得或d=0(舍去),由此可求出数列{an}的前n项和.解答;解:设数列{an}的公差为d,则根据题意得(2+2d)2=2?(2+5d),解得或d=0(舍去),所以数列{an}的前n项和.故选A.点评;本题考查数列的性质和应用,解题时要认真审题,仔细解答.7.(2012?宝鸡模拟)在△ABC中,条件甲:A<B,条件乙:cos2A>cos2B,则甲是乙的()A.充分非必要条件 B.必要非充分条件C.既非充分又非必要条件 D.充要条件参考答案:D【考点】必要条件、充分条件与充要条件的判断.【分析】大前提是三角形中,利用大角对大边得到甲成立的充要条件,利用正弦定理及不等式的性质得到与乙充要.【解答】解:∵在△ABC中,A<B?a<b?sinA<sinB?sin2A<sin2B?1﹣cos2A<1﹣cos2B?cos2A>cos2B∴甲是乙充要条件.故选D【点评】本题考查三角形的一些结论的应用:大边对大角、正弦定理、余弦定理.8.下列说法正确的是(

)①必然事件的概率等于1;

②互斥事件一定是对立事件;③球的体积与半径的关系是正相关;

④汽车的重量和百公里耗油量成正相关A、①②

B、①③

C、①④

D、③④参考答案:C9.已知定义域为R的奇函数f(x)的图象是一条连续不断的曲线,当x∈(1,+∞)时,f′(x)<0;当x∈(0,1)时,f′(x)>0,且f(2)=0,则关于x的不等式(x+1)f(x)>0的解集为() A.(﹣2,﹣1)∪(0,2) B. (﹣∞,﹣2)∪(0.2) C.(﹣2,0) D. (1,2)参考答案:A略10.不等式的解集是(

)A.

B.

C.

D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若是R上的单调递增函数,则实数a的取值范围为

参考答案:[4,8)12.已知a2+b2+c2=1,x2+y2+z2=9,则ax+by+cz的最大值为

参考答案:313.将2个a和2个b共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使所有字母既不同行也不同列,则不同的填法共有

种(用数字作答)参考答案:

144略14.已知函数是定义在R上的最小正周期为3的奇函数,当时,,则

。参考答案:-115.从一批含有6件正品,3件次品的产品中,有放回地抽取2次,每次抽取1件,设抽得次品数为X,则

=____________.参考答案:16.在△ABC中,角A,B均为锐角,则“cosA>sinB”是“△ABC是钝角三角形”的_____条件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分又不必要”)参考答案:充要【分析】利用诱导公式及余弦函数的单调性和充要条件的定义可得答案.【详解】因为,所以,又因为角,均为锐角,所以为锐角,又因为余弦函数在上单调递减,所以,所以中,,所以,所以为钝角三角形,若为钝角三角形,角、均为锐角所以,所以所以,所以,即故是为钝角三角形的充要条件.故答案为:充要【点睛】本题考查诱导公式及余弦函数的单调性及三角形的基本知识,以及充要条件的定义,属中档题.17.已知是不相等的正数,,则的大小关系是_________。参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)(2015秋?惠州校级期中)已知定圆C:x2+(y﹣3)2=4,过M(﹣1,0)的直线l与圆C相交于P,Q两点,(1)当|PQ|=2时,求直线l的方程;(2)求△CPQ(C为圆心)面积的最大值,并求出当△CPQ面积取得最大值时的直线l方程.参考答案:解:(1)当直线l与x轴垂直时,易知x=﹣1符合题意;…(2分)当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于|PQ|=2,所以C到l的距离d==1由=1,解得k=.…(4分)故直线l的方程为x=﹣1或4x﹣3y+4=0.…(6分)(2)设C到直线l的距离为d,则|PQ|=2,…(7分)∴△CPQ面积S==d≤=2,…(9分)当且仅当d2=4﹣d2,即d=时,等号成立,当l与x轴垂直时,不合题意;…(10分)当l的斜率存在时,设直线l的方程为y=k(x+1),d==解得:k=﹣7或k=1,…(11分)∴直线l的方程是:7x+y+7=0或x﹣y+1=0.…(12分考点:直线与圆的位置关系.专题:综合题;直线与圆.分析:(1)分类讨论,利用C到l的距离d=1,即可求直线l的方程;(2)表示出面积,利用基本不等式,即可得出结论.解答:解:(1)当直线l与x轴垂直时,易知x=﹣1符合题意;…(2分)当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于|PQ|=2,所以C到l的距离d==1由=1,解得k=.…(4分)故直线l的方程为x=﹣1或4x﹣3y+4=0.…(6分)(2)设C到直线l的距离为d,则|PQ|=2,…(7分)∴△CPQ面积S==d≤=2,…(9分)当且仅当d2=4﹣d2,即d=时,等号成立,当l与x轴垂直时,不合题意;…(10分)当l的斜率存在时,设直线l的方程为y=k(x+1),d==解得:k=﹣7或k=1,…(11分)∴直线l的方程是:7x+y+7=0或x﹣y+1=0.…(12分)点评:此题考查了直线与圆相交的性质,涉及的知识有:点到直线的距离公式,三角形的面积公式,圆的标准方程,以及直线的点斜式方程,是一道多知识点的综合题.19.设函数f(x)=x3+3ax2﹣9x+5,若f(x)在x=1处有极值(1)求实数a的值(2)求函数f(x)的极值(3)若对任意的x∈[﹣4,4],都有f(x)<c2,求实数c的取值范围.参考答案:【考点】6D:利用导数研究函数的极值;6E:利用导数求闭区间上函数的最值.【分析】(1)求出导数,由题意可得f′(1)=0,解方程可得a=1;(2)求出导数,令导数大于0,可得增区间,令导数小于0,可得减区间,进而得到极值;(3)求出函数在[﹣4,4]上的最大值,由不等式恒成立思想可得c的二次不等式,解得c即可得到范围.【解答】解:(1)f′(x)=3x2+6ax﹣9,由已知得f′(1)=0,即3+6a﹣9=0,解得a=1.(2)由(1)得:f(x)=x3+3x2﹣9x+5,则f′(x)=3x2+6x﹣9,令f′(x)=0,解得x1=﹣3,x2=1,当x∈(﹣∞,﹣3),f′(x)>0,当x∈(﹣3,1),f′(x)<0,当x∈(1,+∞),f′(x)>0,所以f(x)在x=﹣3处取得极大值,极大值f(﹣3)=32,在x=1处取得极小值,极小值f(1)=0;(3)由(2)可知极大值f(﹣3)=32,极小值f(1)=0,又f(﹣4)=25,f(4)=81,所以函数f(x)在[﹣4,4]上的最大值为81,对任意的x∈[﹣4,4],都有f(x)<c2,则81<c2,解得c>9或c<﹣9.即有c的范围为(﹣∞,﹣9)∪(9,+∞).20.已知集合,其中。表示集合A中任意两个不同元素的和的不同值的个数。(1)若,分别求和的值;(2)若集合,求的值,并说明理由;(3)集合A中有2019个元素,求的最小值,并说明理由。参考答案:(1)=5,=10(2)见解析;(3)最小值是4035【分析】(1)根据题意进行元素相加即可得出和的值;(2)因为共有项,所以.由集合,任取,由此能出的值;(3)不妨设,可得,故中至少有4035个不同的数,即.由此能出的最小值.【详解】(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得=5,由1+2=3,1+4=5,1+8=9,1+16=17,2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得=10.(2)证明:因为共有项,所以.又集合,不妨设,m=1,2,…,n.,当时,不妨设,则,即,当时,,因此,当且仅当时,.即所有的值两两不同,因此.(3)不妨设,可得,故中至少有4035个不同的数,即.事实上,设成等差数列,考虑,根据等差数列的性质,当时,;当时,;因此每个和等于中的一个,或者等于中的一个.所以最小值是4035。【点睛】本题考查,,,的最小值的求法,是中档题,解题时要认真审题,注意集合性质、分类讨论思想的合理运用.21.(1)若函数f(x)=x3+bx2+cx+d的单调递减区间(﹣1,2)求b,c的值;(2)设f(x)=,若f(x)在(,+∞)上存在单调递增区间,求a的取值范围;(3)已知函数f(x)=alnx﹣ax﹣3(a∈R),若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意t∈[1,2],函数g(x)=x3+x2[f′(x)+]在区间(t,3)上总不是单调函数,求m的取值范围.参考答案:【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,问题转化为3x2+2bx+c=0的两根分别为﹣1,2,根据根与系数的关系求出a,b的值即可;(2)函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解,只需f′()>0即可,根据一元二次函数的性质即可得到结论;(3)求出函数g(x)的导数,问题转化为m+4<﹣3t,根据函数的单调性求出m的范围即可.【解答】解:(1)∵f(x)=x3+bx2+cx+d,∴f'(x)=3x2+2bx+c,因为f(x)=x3+bx2+cx+d的单调递减区间(﹣1,2),所以方程f'(x)=3x2+2bx+c=0的两根分别为﹣1,2,即1=﹣,﹣2=,所以;(2)∵f(x)=﹣x3+x2+2ax,∴函数的导数为f′(x)=﹣x2+x+2a,若函数f(x)在(,+∞)上存在单调递增区间,即f′(x)>0在(,+∞)上有解∵f′(x)=﹣x2+x+2a,∴只需f′()>0即可,由f′()=﹣++2a=2a+>0,解得a>﹣,当a=﹣时,f′(x)=﹣x2+x﹣=﹣(3x﹣2)(3x﹣1),则当x>时,f′(x)<0恒成立,即此时函数f(x)在(,+∞)上为减函数,不满足条件.(3)由f′(2)=﹣=1,a=﹣2,∴f(x)=﹣2lnx+2x﹣3,∴g(x)=x3+(+2)x2﹣2x,∴g′(x)=3x2+(m+4)x﹣2,令g′(x)=0得,△=(m+4)2+24>0,故g′(x)=0两个根一正一负,即有且只有一个正根,∵函数g(x)在区间(t,3)上总不是单调函数,∴g′(x)=0在(t,3)上有且只有实数根,∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论