版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年辽宁省阜新市第十四中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.若用函数f(x)=-x2+4x+7进行价格模拟(注x=0表示4月1号,x=1表示5月1号,…,以此类推,通过多年的统计发现,当函数,取得最大值时,拓展外销市场的效果最为明显,则可以预测明年拓展外销市场的时间为(A)5月1日(B)6月1日(C)7月1日(D)8月1日参考答案:B略2.能够把圆:的周长和面积同时分为相等的两部分的函数称为圆的“和谐函数”,下列函数不是圆的“和谐函数”的是()A.
B.C.
D.参考答案:D3.设直线m、n和平面,下列四个命题中,正确的是
(
)
A.若
B.若
C.若
D.若参考答案:D因为选项A中,两条直线同时平行与同一个平面,则两直线的位置关系有三种,选项B中,只有Mm,n相交时成立,选项C中,只有m垂直于交线时成立,故选D
4.过双曲线(,)的右焦点作直线的垂线,垂足为,交双曲线的左支于点,若,则该双曲线的离心率为(
)A.
B.2
C.
D.参考答案:C试题分析:设双曲线的右焦点的坐标,由于直线与直线垂直,所以直线方程为,联立,求出点,由已知,得点,把点坐标代入方程,,整理得,故离心率,选C.考点:1.双曲线的简单几何性质;2.平面向量的坐标运算.5.若复数z满足,则在复平面内z的共轭复数对应的点位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限参考答案:A【分析】先求出复数z和,再求出在复平面内的共轭复数对应的点的位置得解.【详解】由题得,所以,所以在复平面内的共轭复数对应的点为(1,1),在第一象限.故选:A【点睛】本题主要考查复数的模和复数的除法,意在考查学生对这些知识的理解掌握水平和分析推理能力.
6.已知曲线的两条相邻的对称轴之间的距离为,且曲线关于点成中心对称,若,则(A)
(B)
(C)
(D)参考答案:C【知识点】三角函数的图象与性质C3:∵曲线f(x)=sin(wx)+cos(wx)=2sin(wx+)的两条相邻的对称轴之间的距离为,∴=,∴w=2∴f(x)=2sin(2x+).
∵f(x)的图象关于点(x0,0)成中心对称,∴f(x0)=0,即2sin(2x0+)=0,
∴2x0+=kπ,∴x0=-,k∈Z,∵x0∈[0,],∴x0=.【思路点拨】利用两角和的正弦公式化简f(x),然后由f(x0)=0求得[0,]内的x0的值.7.已知等比数列{an}前n项和为Sn,则下列一定成立的是() A.若a3>0,则a2013<0 B. 若a4>0,则a2014<0 C.若a3>0,则S2013>0 D. 若a4>0,则S2014>0参考答案:考点: 等比数列的性质.专题: 等差数列与等比数列.分析: 对于选项A,B,D可通过q=﹣1的等比数列排除,对于选项C,可分公比q>0,q<0来证明即可得答案.解答: 解:对于选项A,可列举公比q=﹣1的等比数列1,﹣1,1,﹣1,…,显然满足a3>0,但a2013=1>0,故错误;对于选项B,可列举公比q=﹣1的等比数列﹣1,1,﹣1,1…,显然满足a4>0,但a2014=0,故错误;对于选项D,可列举公比q=﹣1的等比数列﹣1,1,﹣1,1…,显然满足a2>0,但S2014=0,故错误;对于选项C,因为a3=a1?q2>0,所以a1>0.当公比q>0时,任意an>0,故有S2013>0;当公比q<0时,q2013<0,故1﹣q>0,1﹣q2013>0,仍然有S2013=>0,故C正确,故选C.点评: 本题主要考查等比数列的定义和性质,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法,属于中档题.8.(09年宜昌一中10月月考文)把函数的图象上所有的点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是(
)A.
B.
C.
D.参考答案:C9.若满足条件的点构成三角形区域,则实数的取值范围是
参考答案:A10.已知点Q(-1,m),P是圆C:上任意一点,若线段PQ的中点M的轨迹方程为,则m的值为A.1
B.2
C.3
D.4参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数f(x)=x3-3x2+1在x=________处取得极小值.参考答案:2略12.设函数,则____;函数的值域是____.参考答案:,.试题分析:,∴,当时,,当时,,∴的值域为.考点:分段函数.13.函数f(x)=的值域为.参考答案:[0,1)略14.如图,在平面斜坐标系中,。斜坐标定义:如果,(其中分别是轴,轴的单位向量),则叫做P的斜坐标。(1)已知P的斜坐标为,则
。(2)在此坐标系内,已知,动点P满足,则P的轨迹方程是
。参考答案:
本题是新信息题,读懂信息,斜坐标系是一个两坐标轴夹角为的坐标系。这是区别于以前学习过的坐标系的地方。(1),(2)设,由得,整理得:。本题给出一个新情景,考查学生运用新情景的能力,只要明白了本题的本质是向量一个变形应用,问题即可解决。15.对于三次函数,给出定义:设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且拐点就是对称中心.若,则该函数的对称中心为
,计算
.参考答案:略16.给出下列命题;①设表示不超过的最大整数,则;②定义在R上的函数,函数与的图象关于y轴对称;
③函数的对称中心为;
④定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个。
其中正确的命题序号是_____________.参考答案:①④17.设与是定义在同一区间[a,b]上的两个函数,若函数在上有两个不同的零点,则称和在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若与在[1,3]上是“关联函数”,则实数m的取值范围是_________.参考答案:.【分析】令,可得出,将问题转化为直线与函数在区间上的图象有两个交点,求实数的取值范围,然后利用导数分析函数的单调性与极值以及端点函数值,可得出实数的取值范围.【详解】令,得,得.问题等价于直线与曲线在区间上的图象有两个交点,求实数的取值范围.,令,得.当时,;当时,.所以,函数在处取得极小值,亦即最小值,且.又,,且.因此,当时,直线与函数在区间上的图象有两个交点,故答案为:.【点睛】本题考查函数新定义问题,解题的关键就是将问题转化为函数零点来处理,并利用参变量分离法来处理,考查化归与转化数学思想,属于难题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.选修4-4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.(1)写出曲线C的直角坐标方程;(2)已知点P的直角坐标为,直线l与曲线C相交于不同的两点A,B,求的取值范围.参考答案:解:(1);…5分(2)因为点在椭圆的内部,故与恒有两个交点,即,将直线的参数方程与椭圆的直角坐标方程联立,得,整理得,则.
19.(本小题满分13分)设为数列的前项和,且有(Ⅰ)求数列的通项公式;(Ⅱ)若数列是单调递增数列,求的取值范围.参考答案:(Ⅰ)当时,由已知
…①于是
…②由②-①得
……③于是
……④由④-③得
……⑤上式表明:数列和分别是以,为首项,6为公差的等差数列.
4分又由①有,所以,由③有,,所以,.所以,.
8分(Ⅱ)数列是单调递增数列且对任意的成立.且.所以的取值范围是
13分20.1)(本小题6分)在平面直角坐标系中,已知某点,直线.求证:点P到直线的距离2)(本小题7分)已知抛物线C:的焦点为F,点P(2,0),O为坐标原点,过P的直线与抛物线C相交于A,B两点,若向量在向量上的投影为n,且,求直线的方程。参考答案:1)见教材2)法一:时,与已知矛盾设直线方程:。代入抛物线方程可得:,,
法二:设直线l的倾斜角为,设直线方程:,,,,21.(本小题满分13分)在股票市场上,投资者常参考股价(每一股的价格)的某条平滑均线(记作MA)的变化情况来决定买入或卖出股票.股民老王在研究股票的走势图时,发现一只股票的MA均线近期走得很有特点:如果按如图所示的方式建立平面直角坐标系xoy,则股价y(元)和时间x的关系在ABC段可近似地用解析式来描述,从C点走到今天的D点,是震荡筑底阶段,而今天出现了明显的筑底结束的标志,且D点和C点正好关于直线对称.老王预计这只股票未来的走势如图中虚线所示,这里DE段与ABC段关于直线l对称,EF段是股价延续DE段的趋势(规律)走到这波上升行情的最高点F.现在老王决定取点A(0,22),点B(12,19),点D(44,16)来确定解析式中的常数(1)请你帮老王算出,并回答股价什么时候见顶(即求F点的横坐标);(2)老王如能在今天以D点处的价格买入该股票5000股,到见顶处F点的价格全部卖出,不计其它费用,这次操作他能赚多少元?参考答案:(1)∵C,D关于直线对称∴C点坐标为(2×34-44,16),即(24,16)把A、B、C的坐标代入解析式,得,整理得
又
将代入1)得于是,段的解析式为由对称性得,段的解析式为所以,由,得所以当时,股票见顶.(2)由(1)可知,,故这次操作老王能赚5000×(25-16)=45000元.22.某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论