2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题_第1页
2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题_第2页
2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题_第3页
2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题_第4页
2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年浙江省绍兴市柯岩中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合M={0,1,2,3},N={x|x2﹣3x<0},则M∩N=()A.{0} B.{x|x<0} C.{x|0<x<3} D.{1,2}参考答案:D【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,再找出两集合的交集即可.【解答】解:由N中的不等式变形得:x(x﹣3)<0,解得:0<x<3,即N=(0,3),∵M={0,1,2,3},∴M∩N=[1,2}.故选:D.2.已知,,则下列大小关系正确的是(

)A.

B.

C.

D.参考答案:B因为,所以,选B.3.复平面内,复数对应的点位于(

)A.第一象限

B.第二象限

C.第三象限

D.第四象限参考答案:B4.已知函数

则的值域为A.

B.

C.

D.参考答案:A5.下列命题中是假命题的是()

A.都不是偶函数

B.有零点

C.

D.上递减

参考答案:A当时,为偶函数,所以A错误,选A.6.已知,则下列结论中正确的是()A.f(x)的图象关于点对称B.f(x)的图象关于直线对称C.函数f(x)在区间上单调递增D.将f(x)的图象向右平移个单位长度可以得到y=sin2x的图象参考答案:B【考点】H6:正弦函数的对称性.【分析】利用正弦函数的图象和性质,函数y=Asin(ωx+φ)的图象变换规律,逐一判断各个选项是否正确,从而得出结论.【解答】解:由于已知,令x=,求得f(x)=,故排除A;令x=,求得f(x)=1为最大值,可得f(x)的图象关于直线对称,故B正确.在区间上,2x+∈[,],故函数f(x)在区间上单调递减,故排除C;将f(x)的图象向右平移个单位长度可以得到y=sin(2x﹣+)=sin(2x﹣)的图象,故排除D,故选:B.7.已知函数(

参考答案:A略8.设,向量且,则(

)A.

B.

C.

D.参考答案:B略9.设全集,,若CUP恒成立,则实数最大值是

A.

C.

C.

D.参考答案:C10.2019年4月25日-27日,北京召开第二届“一带一路”国际高峰论坛,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为(

)A.198 B.268 C.306 D.378参考答案:A【分析】根据题意,分两种情况讨论,①3人中有2名中国记者和1名国外记者,求出不同的提问方式的种数;②3人中有1名中国记者和2名国外记者,求出不同的提问方式的种数,由分类计数原理相加即得答案.【详解】分两种情况,若选两个国内媒体一个国外媒体,有种不同提问方式;若选两个外国媒体一个国内媒体,有种不同提问方式,所以共有种提问方式.故选:A.【点睛】本题主要考查排列组合的综合应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.二、填空题:本大题共7小题,每小题4分,共28分11.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,则不同的分法的总数是.(用数字作答)参考答案:36【考点】排列、组合的实际应用.【分析】本题是一个分步计数问题,先选两个元素作为一个元素,问题变为三个元素在三个位置全排列,得到结果.【解答】解:由题意知本题是一个分步计数问题,4位同学分到三个不同的班级,每个班级至少有一位同学,先选两个人作为一个整体,问题变为三个元素在三个位置全排列,共有C42A33=36种结果,故答案为:36.【点评】本题考查分步计数原理,是一个基础题,也是一个易错题,因为如果先排三个人,再排最后一个人,则会出现重复现象,注意不重不漏.12.某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm、和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为

cm.参考答案:

185

本题考查了求解线性回归方程以及利用所求的方程进行预测的方法,难度中等。

根据题中所提供的信息,可知父亲与儿子的对应数据可列表如下:父亲的身高(x)173170176儿子的身高(y)170176182

因为所以,所以回归直线方程为,从而可预测他孙子的身高为182+3=185(cm)。13.已知函数()的图象如下图所示,它与x轴在原点处相切,且x轴与函数图象所围区域(图中阴影部分)的面积为,则a的值为

.参考答案:,,∴f(x)=-x3+ax2,令f(x)=0,得x=0或x=a(a<0).∴S阴影=[0-(-x3+ax2)]dx=(x4-ax3)|=a4=,∴a=.14.集合,若的子集有4个,则的取值范围是

.参考答案:15.已知各项均为正数的等比数列的公比为,,,则

.参考答案:2因为为等比数列,所以,又因为各项均为正数,,故答案为2.

16.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是_______.参考答案:17.如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是.参考答案:考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设|AF1|=x,|AF2|=y,利用椭圆的定义,四边形AF1BF2为矩形,可求出x,y的值,进而可得双曲线的几何量,即可求出双曲线的离心率.解:设|AF1|=x,|AF2|=y,∵点A为椭圆上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴,即x2+y2=(2c)2=12,②由①②得,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a′,焦距为2c′,则2a′=|AF2|﹣|AF1|=y﹣x=2,2c′=2,∴C2的离心率是e==.故答案为:.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:学生序号i1234567数学成绩xi60657075858790物理成绩yi70778085908693(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.7683812526参考答案:【考点】离散型随机变量的期望与方差;线性回归方程;离散型随机变量及其分布列.【分析】(Ⅰ)根据分层抽样的定义建立比例关系即可得到结论.(Ⅱ)(i)ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.(ii)根据条件求出线性回归方程,进行求解即可.【解答】(Ⅰ)解:依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为18=3名,故不同的样本的个数为.(Ⅱ)(ⅰ)解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为ξ0123PEξ=0×+1×+2×+3×=.(ⅱ)解:∵b=0.65,a==83﹣0.65×75=33.60.∴线性回归方程为=0.65x+33.60当x=96时,=0.65×96+33.60=96.可预测该同学的物理成绩为96分.19.设p:关于x的不等式ax>1的解集是{x|x<0};q:函数的定义域为R.若p∨q是真命题,p∧q是假命题,求实数a的取值范围.参考答案:【考点】复合命题的真假.【分析】根据指数函数的单调性求得命题p为真时a的取值范围;利用求出命题q为真时a的范围,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,分p真q假和q真p假两种情况求出a的范围,再求并集.【解答】解:∵关于x的不等式ax>1的解集是{x|x<0},∴0<a<1;故命题p为真时,0<a<1;∵函数的定义域为R,∴?a≥,由复合命题真值表知:若p∨q是真命题,p∧q是假命题,则命题p、q一真一假,当p真q假时,则?0<a<;当q真p假时,则?a≥1,综上实数a的取值范围是(0,)∪[1,+∞).20.已知.(Ⅰ)当时,求的单调区间;(Ⅱ)若为的导函数,有两个不相等的极值点,求的最小值.参考答案:解:(1)当时,,,所以在区间上单调递增(2),由题意得,和是方程的两个不相等的正实根,则,解得,,.

由于,所以,所以令,,则,当时,;当时,.所以在上单调递减,在上单调递增,则,所以最小值为

21.(本小题共14分)已知椭圆的短轴长为,离心率为,直线与椭圆交于两点,且线段的垂直平分线通过点.(Ⅰ)求椭圆的标准方程;(Ⅱ)求△(为坐标原点)面积的最大值.参考答案:【知识点】椭圆【试题解析】解:(Ⅰ)由已知可得解得,

故椭圆的标准方程为.

(Ⅱ)设,,

联立方程

消去得.

当,

即时,

,.

所以,.

当时,线段的垂直平分线显然过点

因为,所以

,当时,取到等号.

当时,因为线段的垂直平分线过点,

所以,

化简整理得.

由得.

又原点到直线的距离为.

所以

而且,

则.

所以当,即时,取得最大值.

综上,最大值为.22.已知函数f(x)=x﹣ax2﹣lnx(a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3﹣2ln2.参考答案:【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)先求出函数的导数,通过讨论a的范围,确定导函数的符号,从而判断函数的单调性;(2)表示出f(x1)+f(x2)=lna++ln2+1,通过求导进行证明.【解答】解:(1)∵f′(x)=﹣,(x>0,a>0),不妨设φ(x)=2ax2﹣x+1(x>0,a>0),则关于x的方程2ax2﹣x+1=0的判别式△=1﹣8a,当a≥时,△≤0,φ(x)≥0,故f′(x)≤0,∴函数f(x)在(0,+∞)上单调递减,当0<a<时,△>0,方程f′(x)=0有两个不相等的正根x1,x2,不妨设x1<x2,则当x∈(0,x1)及x∈(x2,+∞)时f′(x)<0,当x∈(x1,x2)时,f′(x)>0,∴f(x)在(0,x1),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论