版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年山东省菏泽市定陶县马集中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“?x0∈R,x3﹣x2+1>0”的否定是()A.?x∈R,x3﹣x2+1≤0 B.?x0∈R,x3﹣x2+1<0C.?x0∈R,x3﹣x2+1≤0 D.不存在x∈R,x3﹣x2+1>0参考答案:A【考点】命题的否定.【专题】常规题型.【分析】特称命题“?x0∈M,p(x)”的否定为全称命题“?x∈M,¬p(x)”.【解答】解:特称命题“?x0∈R,x3﹣x2+1>0”的否定是“?x∈R,x3﹣x2+1≤0”.故选A.【点评】本题考查特称命题的否定形式,要注意存在量词“?”应相应变为全称量词“?”.2.如图,在三棱锥A﹣BCD中,侧面ABD⊥底面BCD,BC⊥CD,AB=AD=4,BC=6,BD=4,直线AC与底面BCD所成角的大小为()A.30° B.45° C.60° D.90°参考答案:A【考点】直线与平面所成的角.【分析】面ABD⊥底面BCD,AB=AD,取DB中点O,则AO⊥面BCD,即∠ACO就是直线AC与底面BCD所成角,解三角形即可求得角的大小.【解答】解:∵面ABD⊥底面BCD,AB=AD,取DB中点O,则AO⊥面BCD,∴∠ACO就是直线AC与底面BCD所成角.∵BC⊥CD,BC=6,BD=4,∴CO=2,在Rt△ADO中,OD=,在Rt△AOC中,tan∠ACO=.直线AC与底面BCD所成角的大小为30°.故选:A.【点评】本题考查了直线与平面所成角的求解,找到所求的角是关键,属于中档题.3.从1,2,3,4,5中任意取出两个不同的数,其和为奇数的概率为(
)A.
B.
C.
D.参考答案:B4.从标有数字3,4,5,6,7的五张卡片中任取2张不同的卡片,事件A=“取到2张卡片上数字之和为偶数”,事件B=“取到的2张卡片上数字都为奇数”,则P(B|A)=()A. B. C. D.参考答案:C【考点】条件概率与独立事件.【分析】先求出P(A),P(B),根据条件概率公式计算得到结果.【解答】解:从5张卡片中随机抽取2张共有C52=10种方法,事件A=“取到2张卡片上数字之和为偶数”,表示取出的2张卡片上的数字必须两个奇数或两个偶数,共有C22+C32=4种结果,则P(A)=事件B=“取到的2张卡片上数字都为奇数”,表示取出的2张卡片上的数字必须两个奇数共有=3种结果,则P(B)=,所以P(B|A)=故选:C【点评】本小题主要考查等可能事件概率求解问题,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.5.某程序的框图如图所示,则运行该程序后输出的的值是(
)A.B.C.D.参考答案:A6.若存在直线l与曲线C1和曲线C2都相切,则称曲线C1和曲线C2为“相关曲线”,有下列四个命题:①有且只有两条直线l使得曲线和曲线为“相关曲线”;②曲线和曲线是“相关曲线”;③当时,曲线和曲线一定不是“相关曲线”;④必存在正数a使得曲线和曲线为“相关曲线”.其中正确命题的个数为(
)A.1 B.2 C.3 D.4参考答案:B【分析】①判断两圆相交即可;②判断两双曲线是共轭双曲线即可;③判断两曲线可能相切即可;;④假设直线与曲线和曲线都相切,切点分别为,根据公切线重合,判断方程有实数解即可.【详解】①圆心,半径,圆心,半径,,因为,所以曲线与曲线有两条公切线,所以①正确;②曲线和曲线是“相关曲线”是共轭双曲线(一部分),没有公切线,②错误;③由,消去,得:,即,令得:,当时,曲线与曲线相切,所以存在直线与曲线与曲线都相切,所以③错误;④假设直线与曲线和曲线都相切,切点分别为和,,,所以分别以和为切点的切线方程为,,由得:,令,则,令,得:(舍去)或,当时,,当时,,所以,所以方程有实数解,所以存在直线与曲线和曲线都相切,所以④正确.所以正确命题的个数是,故选B.【点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.7.已知圆的极坐标方程为,圆心为C,点P的极坐标为,则(
)A. B.4 C. D.2参考答案:C【分析】先把极坐标方程化为直角坐标方程,然后结合平面解析几何知识求解.【详解】因为圆的极坐标方程为,所以化为直角坐标方程为,圆心为;因为点的极坐标为,所以化为直角坐标为,所以.【点睛】本题主要考查极坐标和直角坐标间的相互转化,熟记转化公式是求解关键.8.已知集合,,则=()A. B. C. D.参考答案:D略9.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3
B.(k+2)3
C.(k+1)3
D.(k+1)3+(k+2)3参考答案:A略10.在等差数列{an}中,已知a3+a8=10,则3a5+a7=(
)A.10 B.18 C.20 D.28参考答案:C【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】根据等差数列性质可得:3a5+a7=2(a5+a6)=2(a3+a8).即可得到结论.【解答】解:由等差数列的性质得:3a5+a7=2a5+(a5+a7)=2a5+(2a6)=2(a5+a6)=2(a3+a8)=20,故选C.【点评】本题考查等差数列的性质及其应用,属基础题,准确理解有关性质是解决问题的关键.二、填空题:本大题共7小题,每小题4分,共28分11.双曲线以为焦点,且虚轴长为实轴长的倍,则该双曲线的标准方程是
.参考答案:12.已知实数1,m,4构成一个等比数列,则圆锥曲线+y2=1的离心率为.参考答案:或【考点】椭圆的简单性质;等比数列的性质;双曲线的简单性质.【分析】利用等比数列的性质求出m,然后利用椭圆以及双曲线的性质求出离心率即可.【解答】解:实数1,m,4构成一个等比数列,可得m=±2,m=2时,圆锥曲线+y2=1,它的离心率为:e==.m=﹣2时,圆锥曲线y2﹣=1,它的离心率为:e==.故答案为:或.【点评】本题考查圆锥曲线的离心率的求法,等比数列的性质的应用,考查计算能力.13.已知复数z1=3+4i,z2=t+i,,且z1?是实数,则实数t等于.参考答案:【考点】复数代数形式的乘除运算.【分析】首先写出复数的共轭复数,再进行复数的乘法运算,写成复数的代数形式的标准形式,根据是一个实数,得到虚部为0,得到关于t的方程,得到结果.【解答】解:∵复数z1=3+4i,z2=t+i,∴z1?=(3t+4)+(4t﹣3)i,∵z1?是实数,∴4t﹣3=0,∴t=.故答案为:14.已知函数,若关于x的方程f(x)﹣m+1=0恰有三个不等实根,则实数m的取值范围为.参考答案:【考点】54:根的存在性及根的个数判断.【分析】当x≤0时,=为(﹣∞,0]上的减函数,由函数的单调性求其最小值;当x>0时,利用导数研究函数的单调性并求得极值,画出简图,把关于x的方程f(x)﹣m+1=0恰有三个不等实根转化为y=f(x)与y=m﹣1的图象有3个不同交点,数形结合得答案.【解答】解:当x≤0时,=为(﹣∞,0]上的减函数,∴f(x)min=f(0)=0;当x>0时,f(x)=,f′(x)==.则x∈(,+∞)时,f′(x)<0,x∈(0,)时,f′(x)>0.∴f(x)在(,+∞)上单调递减,在(0,)上单调递增.∴f(x)的极大值为f()=.其大致图象如图所示:若关于x的方程f(x)﹣m+1=0恰有三个不等实根,即y=f(x)与y=m﹣1的图象有3个不同交点,则0<m﹣1<.得1<m<.∴实数m的取值范围为,故答案为:.【点评】本题考查根的存在性与根的个数判断,考查利用导数求函数的极值,体现了数形结合的解题思想方法,是中档题.15.如图为某天通过204国道某测速点的汽车时速频率分布直方图,则通过该测速点的300辆汽车中时速在[60,80)的汽车大约有
辆.参考答案:150由频率分布直方图求出通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率,由此能求出通过该测速点的300辆汽车中时速在[60,80)的汽车大约有多少辆.解:由频率分布直方图得:通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率为(0.020+0.030)×10=0.5,∴通过该测速点的300辆汽车中时速在[60,80)的汽车大约有:300×0.5=150辆.故答案为:150.16.若实数满足:,则的最小值是
▲
.参考答案:8略17.已知A(2,﹣3),B(﹣3,﹣2)两点,直线l过定点P(1,1)且与线段AB相交,求直线l的斜率k的取值范围
.参考答案:k≥或k≤﹣4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:
40岁及以下40岁以上合计基本满意151025很满意253055合计404080
(1)根据列联表,能否有85%的把握认为满意程度与年龄有关?(2)若已经在满意程度为“基本满意”的职员中用分层抽样的方式选取了5名职员,现从这5名职员中随机选取3名进行面谈求面谈的职员中恰有2名年龄在40岁及以下的概率.
附:,其中.参考数据:0.500.400.250.150.100.050.0250.0100.4550.7081.3232.0722.7063.8415.0246.635
参考答案:(1)没有85%的把握(2)【分析】(1)根据列联表可以求得K2的观测值,结合临界值表可得;(2)由题意,在满意程度为“基本满意“的职员中用分层抽样的方式选取5名职员,应抽取40岁以下和40岁以上分别为3名和2名,记为A,B,C,d,e,然后用列举法列举出随机选3名的基本事件和面谈的职员中恰有2名年龄在40岁及以下的基本事件,然后用古典概型的概率公式可得.【详解】(1)根据列联表可以求得的观测值:.
∵.∴没有85%的把握认为满意程度与年龄有关.
(2)由题意,在满意程度“基本满意”的职员中用分层抽样的方式选取5名职员,应抽取40岁及以下和40岁以上分别为3名和2名,记为,,,,.
则随机选3名,基本事件为:,,,,,,,,,,共10个.
满足题意的基本事件为:,,,,,,共6个.
设从这5名职员中随机选取3名进行面谈,面谈的职员中恰有2名年龄在40岁及以下的概率为.则.【点睛】本题考查了独立性检验,属中档题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.19.已知各项均为正数的数列{an}的前n项和为Sn,且Sn、an、成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)若,设,求数列{Cn}的前项和Tn.参考答案:【考点】数列的求和.【分析】(Ⅰ)Sn、an、成等差数列.即,再利用1)根据Sn与an的固有关系an=去解(Ⅱ)(Ⅱ),∴bn=4﹣2n,==,可用错位相消法求和.【解答】解:(Ⅰ)由题意知当n=1时,;当两式相减得an=2an﹣2an﹣1(n≥2),整理得:(n≥2)∴数列{an}是为首项,2为公比的等比数列.(Ⅱ),∴bn=4﹣2n==,①②①﹣②得∴【点评】本题考查Sn与an关系的具体应用,指数的运算,数列错位相消法求和知识和方法.要注意对n的值进行讨论20.在正方体ABCD﹣A1B1C1D1中,如图E、F分别是BB1,CD的中点,(1)求证:D1F⊥AE;(2)求直线EF与CB1所成角的余弦值.参考答案:【考点】异面直线及其所成的角.【分析】(1)依题意分别求得A,E,D1和F的坐标,求出,,二者相乘等于0即可证明出AE⊥D1F进而根据线面垂直的性质证明出D1F⊥AD,最后根据线面垂直的判定定理证明出D1F⊥平面ADE.(2)分别求得=(2,1,1),=(1,0,1),利用向量的夹角公式求得异面直线所成角的余弦值.【解答】(1)证明:依题意知D(0,0,0),A(2,0,0),F(0,1,0),E(2,2,1),A1(2,0,2),D1(0,0,2),=(0,0,1),=(0,1,﹣2),∴?=0,∴AE⊥D1F;∵AD⊥平面CDD1C1,D1F?平面CDD1C1,∴D1F⊥AD,∵AE?平面ADE,AD?平面ADE,AE∩AD=A,∴D1F⊥平面ADE.(2)解:依题意可知B1(1,1,1),C(0,1,0),F(0,1,0),E(2,2,1),∴=(2,1,1),=(1,0,1),∴cos<,>=,∴异面直线EF和CB1所成的角余弦值为.21.求与轴相切,圆心在直线上,且被直线截得的弦长等于的圆方程。参考答案:略22.已知曲线C1的参数方程为(t为参数,0≤α<π),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin(θ+).(Ⅰ)若极坐标为的点A在曲线C1上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学模拟考试试卷B卷含答案
- 2024年度山西省高校教师资格证之高等教育法规考前练习题及答案
- 历史教师培训心得体会
- 2024年度茶叶批发销售协议范本
- 2024年私人贷款协议样式
- 房产买卖居间服务协议2024全攻略
- 2024年家庭装修协议
- 2024游乐场设施租赁协议模板
- 2024年居间合作项目协议精简
- 2024年跨境资本贷款协议示例
- 红楼梦81至100回读书笔记3篇
- 学术毕业论文的选题及写作课件
- 新中国成立以来反腐倡廉历史进程回顾课件
- 希沃优化大师操作培训
- 《水稻高产栽培技术》全套课件(完整版)
- 威布尔分布课件
- 卡尺的使用培训课件
- 务工证明excel模板
- 中外警匪片比较课件
- 第九章稳定化聚合物材料及可降解聚合物材料的设计与应用(高分子材料)--课件1
- 液压修井解决方案介绍
评论
0/150
提交评论