版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年四川省自贡市高山中学高三数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知条件p:|x﹣4|≤6,条件q:x≤1+m,若p是q的充分不必要条件,则m的取值范围是()A.(﹣∞,﹣1] B.(﹣∞,9] C.[1,9] D.[9,+∞)参考答案:D【考点】必要条件、充分条件与充要条件的判断.【分析】解出关于p的不等式,根据充分必要条件的定义求出m的范围即可.【解答】解:由|x﹣4|≤6,解得:﹣2≤x≤10,故p:﹣2≤x≤10;q:x≤1+m,若p是q的充分不必要条件,则1+m≥10,解得:m≥9;故选:D.【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.2.给出下列三个函数的图象:它们对应的函数表达式分别满足下列性质中的一条:① ② ③则正确的对应方式是_________________。A.(a)-①,(b)-②,(c)-③ B.(b)-①,(c)-②,(a)-③C.(c)-①,(b)-②,(a)-③ D.(a)-①,(c)-②,(b)-③参考答案:C略3.已知是R上的偶函数,若将的图象向右平移一个单位,则得到一个奇函数的图象,若则(
) A.2013 B.1 C.0 D.-2013参考答案:C略4.设集合M={y|y=x—x|,x∈R},N={x||x—|<,i为虚数单位,x∈R},则M∩N为
A.(0,1)
B.(0,1]
C.[0,1)
D.[0,1]参考答案:C本题考查了三角函数的运算及其性质、复数模的运算以及集合的有关运算,难度中等。
由,所以,由
即,解得,因此交集为,故选C5.已知正项等比数列中,其前项和为,若,则(
)A.
B.
C.
D.参考答案:根据条件,解得,,,故选D.考点:等比数列6.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为() A. B. C. D. 参考答案:考点: 由三视图求面积、体积.专题: 计算题;空间位置关系与距离.分析: 三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为圆锥的.解答: 解:由题意,该几何体为圆锥的,其底面面积为×π×22=π,高为4,则其体积V=×π×4=,故选B.点评: 三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,本题考查了学生的空间想象力,识图能力及计算能力.7.定义一种新运算:,已知函数,若函数恰有两个零点,则的取值范围为(
).A.(1,2]
B..C.D.参考答案:B解:这类问题,首先要正确理解新运算,能通过新运算的定义把新运算转化为我们已经学过的知识,然后解决问题.本题中实质上就是取中的最小值,因此就是与中的最小值,函数在上是减函数,函数在上是增函数,且,因此当时,,时,,因此,由函数的单调性知时取得最大值,又时,是增函数,且,,又时,是减函数,且.函数恰有两个零点,说明函数的图象与直线有两个交点,从函数的性质知.选B.8.若化简的结果为,则的取值范围是(
)
A.为任意实数
B.
C.
D.参考答案:B略9.将二进制数11100(2)转化为四进制数,正确的是()A.120(4) B.130(4) C.200(4) D.202(4)参考答案:B【考点】进位制.【分析】先将“二进制”数化为十进制数,然后将十进制的28化为四进制,即可得到结论.【解答】解:先将“二进制”数11100(2)化为十进制数为1×24+1×23+1×22=28(10)然后将十进制的28化为四进制:28÷4=7余0,7÷4=1余3,1÷4=0余1所以,结果是130(4)故选:B.10.已知圆经过两点,圆心在轴上,则圆的方程是(A) (B)(C) (D)参考答案:D设圆心坐标为,则,即,解得,所以半径,所以圆的方程是,选D.二、填空题:本大题共7小题,每小题4分,共28分11.在平面直角坐标系中,曲线C的方程为(θ为参数),在以此坐标系的原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+)=1,则直线l与曲线C的公共点共有
个.参考答案:1考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:直线与圆.分析:由曲线C的方程(θ为参数),消去参数化为x2+y2=1,可得圆心C,半径r.由直线l的极坐标方程ρsin(θ+)=1,展开为=1,化为y+x﹣=0.再利用点到直线的距离公式可得圆心到直线l的距离d,再与半径r比较大小即可.解答: 解:由曲线C的方程(θ为参数),消去参数化为x2+y2=1,可得圆心C(0,0),半径r=1.由直线l的极坐标方程ρsin(θ+)=1,展开为=1,化为y+x﹣=0.∴圆心C到直线l的距离d==1=r.因此直线l与⊙C相切,有且只有一个公共点.故答案为:1.点评:本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与曲线的交点判断、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.12.函数是上的单调函数,则的取值范围为
.参考答案:13.函数参考答案: 14.设双曲线的半焦距为,原点到直线的距离等于,则的最小值为
.参考答案:考点:双曲线的几何性质、点到直线的距离公式和基本不等式的综合运用.【易错点晴】本题考查的是圆锥曲线的基本量的计算问题.解答这类问题的一般思路是依据题设条件想方设法建构含的方程,然而本题当得到基本量的等式后,却是转化为建立方程后的最值问题.解答时充分借助题设条件,运用点到直线的距离公式建立了关于的方程,然后再借助基本不等式求出其中的参数的最小值,立意较为新颖.15.已知,函数若函数恰有2个不同的零点,则的取值范围为
▲
.参考答案:(0,2)由已知可得在区间上必须要有零点,故解得:,所以必为函数的零点,故由已知可得:在区间上仅有一个零点.又在上单调递减,所以,解得16.若函数f(x)=k﹣有三个零点,则实数k的取值范围是.参考答案:(﹣2,0)∪(0,2)【考点】函数零点的判定定理.【分析】根据函数与零点的关系将函数转化为两个函数图象的交点个数问题,利用数形结合进行求解即可.【解答】解:由f(x)=k﹣=0得k=,设g(x)=,若函数f(x)=k﹣有三个零点,等价为y=k,和g(x)有三个交点,g(x)==x3﹣3x,(x≠0),函数的导数g′(x)=3x2﹣3=3(x2﹣1),由g′(x)>0得x>1或x<﹣1,此时函数单调递增,由g′(x)<0得﹣1<x<0或0<x<1,此时函数单调递减,即当x=1时,函数取得极小值,g(1)=﹣2,当x=﹣1时,函数取得极大值,g(﹣1)=2,要使y=k,和g(x)有三个交点,则0<k<2或﹣2<k<0,即实数k的取值范围是(﹣2,0)∪(0,2),故答案为:(﹣2,0)∪(0,2)17.函数的图像在点处的切线斜率为______.参考答案:6【分析】先求得导函数,令求得切线的斜率.【详解】依题意,故,也即切线的斜率为.【点睛】本小题主要考查导数的运算,考查切线斜率的求法,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)设动点到点和的距离分别为和,,且存在常数,使得.(1)证明:动点的轨迹为双曲线,并求出的方程;(2)过点作直线双曲线的右支于两点,试确定的范围,使,其中点为坐标原点.参考答案:解析:解法一:(1)在中,,即,,即(常数),点的轨迹是以为焦点,实轴长的双曲线.方程为:.(2)设,①当垂直于轴时,的方程为,,在双曲线上.即,因为,所以.②当不垂直于轴时,设的方程为.由得:,由题意知:,所以,.于是:.因为,且在双曲线右支上,所以.由①②知,.解法二:(1)同解法一(2)设,,的中点为.①当时,,因为,所以;②当时,.又.所以;由得,由第二定义得.所以.于是由得因为,所以,又,解得:.由①②知.19.已知函数的最大值a().(Ⅰ)求a的值;(Ⅱ)若(,),试比较与2的大小.参考答案:(Ⅰ)由于的最大值为,故.(Ⅱ)∵,且,,∴,当且仅当,即,等号成立.所以.20.(本小题满分12分)
如图,五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面ABF是等边三角形,棱EF//BC,且EF=BC.
(I)证明:EO//面ABF;
(Ⅱ)若EF=EO,证明:平面EFO平面ABE.参考答案:略21.(本小题满分14分)如图,四棱锥的底面是边长为的正方形,平面,点是的中点.⑴求证:∥平面;⑵求证:平面平面.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地下污水处理钻机租赁协议
- 物业管理岗位聘用合同书
- 员工合同违约处理指南
- 医院医护人员聘用合同书
- 超市监控设备使用守则
- 2024年度新能源发电项目投资合作协议3篇
- 2024年离婚房产分割协议书及离婚后房产权属转移协议范本3篇
- 风能发电项目招投标流程
- 紧急救援派遣方案
- 2025干股转让合同范本 股权转让合同
- 2024年01月11185行政领导学期末试题答案
- 绩效考核办法1
- 【MOOC】外科护理学-中山大学 中国大学慕课MOOC答案
- 中建爬架施工方案
- 2024年中国甲烷报警仪市场调查研究报告
- 纪检委员工作职责
- 2025版国家开放大学法律事务专科《民法学(2)》期末纸质考试总题库
- 江苏省南通市多校2024-2025学年二年级上学期期中数学试卷
- ZHF形势与政策(2024年秋)-考试题库
- 企业地震应急预案管理方案
- 2024中国工商银行借贷合同范本
评论
0/150
提交评论