版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学业分层测评(七)(建议用时:45分钟)[达标必做]一、选择题1.(2023·郑州高一检测)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定3个平面.其中正确的序号是()A.①B.①④C.②③D.③④【解析】因为梯形有两边平行,所以梯形确定一个平面,所以①是正确的;三条平行直线不一定共面,如直三棱柱的三条平行的棱,所以②不正确;有三个公共点的两个平面不一定重合,如两个平面相交,三个公共点都在交线上,所以③不正确;三条直线两两相交,可以确定的平面个数是1或3,所以④不正确.【答案】A2.已知α,β为平面,A,B,M,N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合【解析】选项C中,α与β有公共点A,则它们有过点A的一条交线,而不是点A,故C错.【答案】C3.(2023·蚌埠高二检测)经过空间任意三点作平面()【导学号:09960046】A.只有一个 B.可作两个C.可作无数多个 D.只有一个或有无数多个【解析】若三点不共线,只可以作一个平面;若三点共线,则可以作出无数多个平面,选D.【答案】D4.空间四点A、B、C、D共面而不共线,那么这四点中()A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线【解析】如图(1)(2)所示,A、C、D均不正确,只有B正确,如图(1)中A、B、D不共线.(1)(2)【答案】B5.如图217,平面α∩平面β=l,A、B∈α,C∈β,C∉l,直线AB∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过()图217A.点A B.点BC.点C,但不过点D D.点C和点D【解析】根据公理判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.故选D.【答案】D二、填空题6.如图218,在正方体ABCDA1B1C1D1图218(1)平面AB1∩平面A1C1(2)平面A1C1CA∩平面AC(3)平面A1C1CA∩平面D1B1BD(4)平面A1C1,平面B1C,平面AB【答案】(1)A1B1(2)AC(3)OO1(4)B17.空间三条直线,如果其中一条直线和其他两条直线都相交,那么这三条直线能确定的平面个数是________.【解析】如图,在正方体ABCDA1B1C1D1①AA1∩AB=A,AA1∩A1B1=A1,直线AB,A1B1与AA1可以确定一个平面(平面ABB1A1②AA1∩AB=A,AA1∩A1D1=A1,直线AB,AA1与A1D1可以确定两个平面(平面ABB1A1和平面ADD1A③三条直线AB,AD,AA1交于一点A,它们可以确定三个平面(平面ABCD,平面ABB1A1和平面ADD1A【答案】1或2或3三、解答题8.如图219所示,在空间四边形各边AD,AB,BC,CD上分别取E,F,G,H四点,如果EF,GH交于一点P,求证:点P在直线BD上.【导学号:09960047】图219【证明】∵EF∩GH=P,∴P∈EF且P∈GH.又∵EF⊂平面ABD,GH⊂平面CBD,∴P∈平面ABD,且P∈平面CBD,∴P∈平面ABD∩平面CBD,∵平面ABD∩平面CBD=BD,由公理3可得P∈BD.∴点P在直线BD上.9.求证:两两相交且不共点的三条直线在同一平面内.【解】已知:如图所示,l1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1,l2,l3在同一平面内.证明:法一∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.法二∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.[自我挑战]10.下列说法中正确的是()A.空间不同的三点确定一个平面B.空间两两相交的三条直线确定一个平面C.空间有三个角为直角的四边形一定是平面图形D.和同一条直线相交的三条平行直线一定在同一平面内【解析】经过同一直线上的三点有无数个平面,故选项A不正确;当两两相交的三条直线相交于一点时,可能确定三个平面,故选项B不正确;有三个角为直角的四边形不一定是平面图形,如在正方体ABCDA1B1C1D1中,四边形ACC1D1中∠ACC1=∠CC1D1=∠C1D1A=90°,但四边形ACC1D【答案】D11.在正方体AC1中,E、F分别为D1C1、B1C1的中点,AC∩BD=P,A1C1∩EF(1)求证:D、B、E、F四点共面;(2)作出直线A1C与平面BDEF的交点R图2110【导学号:09960048】【解】(1)证明:由于CC1和BF在同一个平面内且不平行,故必相交.设交点为O,则OC1=C1C.同理直线DE与CC1也相交,设交点为O′,则O′C1=C1C,故O′与O重合.由此可证得DE∩BF=O,故D、B、F、E四点共面(设为(2)由于AA1∥CC1,所以A1、A、C、C1四点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信托法培训讲义
- 审计机关财务审计培训
- 《各税种的会计核算》课件
- 受戒与破戒的冲突与和谐
- 社区护士家庭访视的沟通唐莹教授护患沟通护患关系护士培训
- 《员工培训教材范本》课件
- 员工培训前须知
- 蚌埠三中2020-2021学年高一第二学期4月月考化学答案
- 心理学的研究内容
- 智慧养老智能家居项目功能架构设计智慧养老技术概论
- 积极心理暗示课件
- 2022年浙江公务员考试申论真题及答案(A卷)
- 二年级下册音乐教案- 欣赏《调皮的小闹钟》 人教版
- 关于增加体检科的可行性报告
- 油藏工程课程设计
- 公路定向钻穿越应急预案
- 幼儿园安全管理网络图
- 年度考核结果证明
- 癌性伤口特性护理课件
- 信贷案例分析题库
- 医院消防安全知识培训课件
评论
0/150
提交评论