版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4章
弹性体振动4.1弦的振动4.2杆的纵向振动4.3圆轴的扭转振动4.4梁的横向振动弦振动在工程实际中常遇到钢索、电线、电缆和皮带等柔性体构件,其共同特点是只能承受拉力,而抵抗弯曲及压缩能力很弱,这类构件的振动问题称为弦的振动问题。其固有频率与弦的密度、弦的长度、截面、张力等有关,因此,知道弦的基本参数,可以通过固有频率可以计算张力,如钢索斜拉桥斜拉索的张力的确定。典型的例子还有吉他、二胡、古筝等乐器。弦振动方程的推导均质弦横向振动的微分方程,又称为波动方程弦振动方程的求解上式中x和t两个变量已经分离。因此,两边都必须等于同一常数。设此常数为-wn2(只有将常数设为负值时,才有可能得到满足端点条件的非零解,该常数即为系统的固有频率)弦振动方程的主振型与多自由度系统振型的比较作为连续系统的弦振动的特性与多自由度系统的特性是一致的,不同的是多自由度系统主振型是以各质点之间的振幅比来表示,而弦振动中质点数趋于无穷多个,质点振幅采用的连续函数-即振型函数Y(x)表示。弦振动方程的主振动杆的轴向振动在工程问题中,常见到以承受轴向力为主的直杆零件,如连杆机构中的连杆,凸轮机构中的挺杆等,它们同样存在着沿杆轴线方向的轴向振动问题。其固有频率与杆的密度、弹性模量、长度、轴向载荷等有关。杆的轴向振动模型三种典型边界条件——(1)①2.0014.9017.974杆的轴向振动主振型杆的轴向振动主振动三种典型边界条件——(2)②杆的纵向振动主振型杆的纵向振动主振动三种典型边界条件——(3)③圆轴的扭转振动在各类机械中,传动轴是经常遇见的零部件,它主要用来传递转矩而不承受弯矩,其振动可简化为细长杆的扭转振动问题。钻杆、车床的转轴、变速箱的齿轮轴等都存在扭转振动。其固有频率与轴的密度、转动惯量、截面、长度、承受的扭矩等有关。圆轴的扭转振动梁的横向振动工程中常见的以承受弯曲为主的机械零件,可简化为梁类力学模型,当一根梁作垂直于其轴线方向的振动时,称为梁的横向振动,由于其主要变形形式是弯曲变形,所以又称为弯曲振动。八音盒上发声的声片就是梁振动的典型例子。其固有频率与梁的密度、弹性模量、轴向惯性矩、截面、长度等有关。梁的横向振动梁的横向振动的求解梁对应的不同边界条件边界条件位移转角弯矩剪切力两端自由梁两端简支梁两端固定梁固定/自由梁固定/简支梁一端固定一端简支梁一端固定一端自由梁梁振动主振型的正交性右边实际上是梁的端点边界条件,无论梁的端点是自由、固定或简支,将端点边界条件代入上式,右边始终为零梁振动主振型的正交性用模态分析法求梁稳态响应(1)通过求梁的自由振动微分方程,可求出在给定端点条件下梁各阶固有频率wnk和相应的各阶主振型Yk(x)(2)对原方程进行坐标变换,将梁的受迫振动微分方程变换成用模态方程来表达。梁的坐标变换表达式对变量x和t分别求偏导,然后代入梁横向振动微分方程将Yj(x)乘以上式两边,并对梁的全长积分得用模态分析法求梁稳态响应(3)求解模态方程,求模态坐标响应,用杜哈美积分求解。(4)求系统的响应fori=1:3;pp0=0;iB=D*A;pp=1.0/B(3);A=B/B(3);whileabs((pp-pp0)/pp)>1.e-12pp0=pp;B=D*A;pp=1.0/B(3);A=B*pp;endif(pp)>0f=sqrt(pp)/2/pi%/单位HZelsef=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年销售人员入职培训与职业发展合同
- 公开课《土地的誓言》课件
- 区块链在体育领域的应用案例考核试卷
- 2025版学校浴室热水供应设备采购与安装合同3篇
- 2025版土地使用权出让居间合同(高端定制版)3篇
- 2025年博主合作广告合同
- 2025年度健康养生门面店铺转让及服务项目合作协议4篇
- 2025年博物文化贷款合同
- 2025年高校外国文教专家教学与研究合作合同3篇
- 2025年公司增资协议书模板
- 乳腺癌的综合治疗及进展
- 【大学课件】基于BGP协议的IP黑名单分发系统
- 2025年八省联考高考语文试题真题解读及答案详解课件
- 信息安全意识培训课件
- 2024年山东省泰安市初中学业水平生物试题含答案
- 美的MBS精益管理体系
- 2024安全员知识考试题(全优)
- 中国移动各省公司组织架构
- 昆明手绘版旅游攻略
- 法律诉讼及咨询服务 投标方案(技术标)
- 格式塔心理咨询理论与实践
评论
0/150
提交评论