




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章近年中考压轴题选练
第45课方程型综合问题考题分析方程型综合题是中考试题中常见的中档题,结合代数式的恒等变形,解方程(组)、解不等式(组),函数知识.其基本形式有:求代数式的值,求参数的值或取值范围,与方程有关的代数式的证明.方程是贯穿初中代数的一条知识主线,方程型综合题也是中考命题的热点.题型分类深度剖析例1:阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用________法达到________的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.换元降次(2)设x2+x=y,于是原方程可变为y2-4y-12=0,解得y1=6,y2=-2.当y=6时,x2+x=6,∴x1=2,x2=-3;当y=-2时,x2+x=-2,方程没有实数根.∴原方程有二个根,x1=2,x2=-3.探究提高:在解题过程体会换元法在解方程时化难为易,化繁为简;本题中用换元法达到降次的目的,将高次方转化为一元一次或一元二次方程.知能迁移1:(1)解方程,求出x1,x2,并计算两个解的和与积,填入下表.方程x1x2x1+x2x1·x29x2-2=02x2-3x=0x2-3x+2=0关于x的方程ax2+bx+c=0(a,b,c为常数,且a≠0,b2-ac≥0)(2)观察表格中方程两个解的和、两个解的积与原方程的系数之间的关系有什么规律,写出你的结论.(2)结论:关于x的方程ax2+bx+c=0(a,b,c为常数,且a≠0,b2-4ac≥0)有两个实数根x1,x2,则有x1+x2=-,x1·x2=.例2:如图,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?解:(1)①∵t=1秒,∴BP=CQ=3×1=3厘米,∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5厘米,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP.②∵vp≠vQ,∴BP≠CQ,又∵△BPD≌CQP,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q运动的时间t==秒,∴vQ===厘米/秒.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?探究提高:这是一个动点问题,要明确动点的运动时间、运动速度,可求得动点的移动路程,根据问题中的等量关系,列出方程,求出动点的运动时间或运动速度.知能迁移2:正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.(1)证明:Rt△ABM∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.例3:如图,已知射线DE与x轴和y轴分别交于点D(3,0)和点E(0,4),动点C从点M(5,0)出发,以1个单位长度/秒的速度沿x轴向左作匀速运动.与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为t秒.(1)请用含t的代数式分别表示出点C与点P的坐标;(2)以点C为圆心、t个单位长度为半径的⊙C与x轴交于A、B两点(点A在点B的左侧),连接PA、PB.①当⊙C与射线DE有公共点时,求t的取值范围;②当△PAB为等腰三角形时,求t的值.探究提高:问题中△PAB为等腰三角形,注意分类讨论,则有PA=PB或PA=AB,或PB=AB,用含t的代数式来表示PA、AB、PB或由此寻找等量关系,列出以t为未知数的方程,求得方程的解,即得到t的值.知能迁移3:如图,已知抛物线y=x2+bx+c与坐标轴交于A、B、C三点,A点的坐标为(-1,0),过点C的直线y=x-3与x轴交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB于点H,若PB=5t,且0<t<1.(1)填空:点C的坐标是_________,b=_________,c=_________;(2)求线段QH的长(用含t的式子表示);(0,-3)-3-(2)求线段QH的长(用含t的式子表示);解:(3)依点P的变化,是否存在t的值,使以P、H、Q为顶点的三角形与△COQ相似?若存在,求出所有t的值;若不存在,说明理由.例4:如图,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=______,点Q到AC的距离是______;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值,若不能,请说明理由.(4)当DE经过点C时,请直接写出t的值.探究提高:通过添加辅助线,或根据已知条件,可以证明两个三角形相似,由相似三角形的性质得对应边成比例,根据此等量关系列出方程.知能迁移4:已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=x-a分别与x轴,y轴相交于B、C两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(____,____),N(____,____);(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P、A、C、N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,请说明理由.思想方法感悟提高方程思想就是把问题中的已知量与未知量之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商务合同协议翻译
- 合同中安全协议
- 纹眉客户合同协议
- 新的安全协议合同书
- 没购房合同怎么签订协议
- 供货协议合同价格调整
- 合同条件更改协议
- 车子承包协议合同
- 木材回收合同协议
- 合同不续约协议
- 施工现场项目部领导带班制度
- 2024年资格考试-国际焊接工程师(IWE)考试近5年真题附答案
- 教育心理学-形考作业2(第四至六章)-国开-参考资料
- 科大讯飞财务报表分析报告
- 心房颤动诊断和治疗中国指南(2023) 解读
- 2024年高考生物三年高考真题及模拟题分类汇编专题16实验与探究含解析
- 地形图测绘报告
- 《新媒体运营》高职新媒体运营全套教学课件
- 混凝土面板堆石坝工程中溢洪道水力设计计算书
- 参观河南省博物院
- 2024水电站股权转让协议
评论
0/150
提交评论