王振发版-分析力学-课件-第4章-力学的变分原理_第1页
王振发版-分析力学-课件-第4章-力学的变分原理_第2页
王振发版-分析力学-课件-第4章-力学的变分原理_第3页
王振发版-分析力学-课件-第4章-力学的变分原理_第4页
王振发版-分析力学-课件-第4章-力学的变分原理_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章力学的变分原理1.变分法简介2.哈密顿原理3.力学原理.方程之间的联系(了解)4.哈密顿原理应用举例5.高斯最小拘束原理(了解)6.拉格朗日最小作用量原理(了解)力学原理:不需经过证明,在实践中靠归纳得出的力学的最基本最普遍的规律。力学原理分为两大类:不变分原理和变分原理;每一类可分为两种形式:微分形式、积分形式。不变分原理:

反映力学系统真实运动的普遍规律,如果原理本身只表明某一瞬时状态系统的运动规律,称为微分原理,如达朗伯原理就是不变分微分原理;如果原理是说明一有限时间过程系统的运动规律,则称为积分原理,如机械能守恒原理即不变分的积分原理。变分原理:

提供一种准则,根据这种准则,可以把力学系统的真实运动与相同条件下约束所允许的一切可能运动区别开来,从而确定系统的真实运动。如果准则是对某一瞬时状态而言的,则该原理称为微分变分原理。虚位移原理就是微分变分原理,它提供了区别非自由质点系的真实平衡位置和约束所允许的邻近的可能平衡位置的准则,动力学普遍方程和本章的高斯最小拘束原理都是微分变分原理。如果准则是对一有限时间过程而言的,则该原理称为积分变分原理,本章的哈密顿原理和拉格朗日最小作用量原理即积分原理。力学的变分原理是变分法在力学中的应用。1.变分法简介1.泛函的概念(1)函数的概念设x和y是两个变量,D是一个给定的数集。如果对D中的每个数x,变量y按确定关系总有一个确定的数值与之对应,则称y是x的函数,记作y=f(x),x称做自变量,y

称做因变量。对于多元函数,记做

y=f(x1,x2,…,xn)(2)泛函的概念给定一个由任何对象组成的集合D,这里所说的任何对象可以是数、数组、点、线、面,也可以是函数或某系统的状态等。设集合D中的元素用x

表示,如果对于集合中的每一个元素x

对应一个数y,则称y是x的泛函,记为y=F(x).有时泛函可以看做是函数,函数也可看做是泛数。譬如,如果集合D中的元素是数x

,则泛函y=F(x)可视为函数y=f(x)

;如果集合D中的元素是数组(x1,x2,…xn),则泛函y=F(x)

可视为函数y=f(x1,x2…xn)。函数和泛函毕竟是两个不同的概念:函数表示的是数与数的一一对应关系,而泛函表示的是函数与数一一对应的关系,函数概念可作为泛函概念的特殊情况。2.变分法简介(1)变分法的研究对象一个可微函数y=f(x)在某点x

具有极值的条件是它的导数等于零,即或说函数的微分等于零,。实践中还常常遇到需要求出泛函的极大值和极小值的问题,变分法就是研究求泛函的极值的方法。凡有关求泛函的极值问题都称做变分问题。例如:著名的最速降线问题就是一个变分问题。在图所示的铅垂平面内,质点M在重力作用下,不计摩擦,无初速地自点A降落到点B,所沿曲线可有无数条,显然A,B两点的直线距离最短,但所用时间并不是最少的,那么,沿哪条曲线所用时间最少呢?由图知,点A,B的坐标分别为(0,0),(),过A,B两点的曲线可用函数表示为(0≤x≤xb)由机械能守恒定律,质点M的速度为在dt

时间间隔内,质点M走过的弧长为则质点M

从点A降落到点B所用时间为上式时间t是用定积分(函数的集合)来表示的,这种关系即泛函,其数值取决于式中未知函数y=f(x)和。另外:在某一曲面上指定的两点之间,求出长度最短曲线问题(短程线问题);求长度一定的封闭线所围面积为最大的问题(等周问题)等,都是变分问题。显然求此泛函的极小值就是求所用的最小时间t,,也就是求出函数中的哪一个函数表示的曲线是最速降线。(2)变分的概念变分分等时变分和全变分两种,全变分又称非等时变分。我们只研究等时变分。设集合D中的元素是表示某一力学系统运动的函数,其中t为自变量,q为力学系统的广义坐标,此函数见下图。当自变量t有微小增量dt时,对应的函数q的微小增量的线性主部dq称为函数的微分,记为

由于是在瞬时t

,不考虑时间t

的变化,这种变分称为等时变分。图给出了函数的变分与微分的区别。

如果自变量t

保持不变,而函数本身形式发生微小变化,则得另一条曲线,如图中虚线所示,显然这种曲线有无数条,令

式中为一参数,为无穷小量。

上式表示的是一族依赖于参数的函数,相应的是一族非常接近的曲线。式中是可微的时间函数。

在瞬时,由函数本身形式的微小变化而得的微小增量的主部称为函数的变分,记为

等时变分的两个运算规则变分与对时间求导数的运算次序可以相互交换,即变分与对时间的积分的运算次序也可以相互交换:变分的导数等于导数的变分;变分的积分等于积分的变分.(3)变分法设泛函J

为定积分

现欲求通过两固定点和的一条曲线,如图实线所示,这条曲线使泛函J具有极值。为表示通过A,B两固定点的与非常接近的一族函数,我们将这族函数表示为依赖于参数的函数;当时,,就是欲求的函数。因可为不同的值,因此泛函J也是的函数,即泛函的极值问题就转变为函数的极值问题。由函数的极值条件*该式说明泛函的极值条件是泛函的变分等于零.得按运算规则。有用分部积分公式,第二项的时间积分为积分号中第二项因两端点A,B是固定的,所以因此上式右边第一项等于零,得由于是任意的,因此上式成立的条件是

上式就是使泛函J取极值时函数应满足的条件,它是关于函数的二阶微分方程,称为欧拉微分方程,解之便得欲求的函数。下面我们来求解质点的最速降线。改变泛函的形式,即对比欧拉微分方程,更换变量,成为式中经整理后得两边同乘以后积分,得即亦即令则代入上式并化简得积分后得由得。于是最后得这是以为参数的旋轮线的曲线方程。其中可由值来确定,由图可见是旋轮的直经,是旋轮的转角。总之,最速降线为一旋轮线。2. 哈密顿原理应用变分法来研究哈密顿原理L为拉格朗日函数,使泛函及泛函的极值条件进而得使泛函取极值时的函数q(t)应满足的条件这恰是一个自由度的保守系统的拉格朗日方程。

对于多自由度的保守系统,其拉格朗日函数为L,仿照对一个自由度系统的分析,便得使泛函取极值时的函数qk(t)应满足的条件为拉格朗日方程组这个结论推导如下:由N个广义坐标构成的空间为N维位形空间为了形象简洁的表示系统的运动,由N个广义坐标和时间t组成的N+1维空间,这样,增广位形空间的一个点就表示了系统在任一瞬时的位置。先介绍增广位形空间的概念:设系统在起始和终止的时间和位置分别用A和B两个点表示,系统的真实运动用上图中的实线AMB表示,此曲线称为系统的真实路径。在相同的始末条件下,系统为约束所允许的与真实运动非常邻近的任一可能运动用图中虚线AM’B表示,此曲线称为系统的可能路径。

在任一瞬时t,可能路径对真实路径的偏离用等时变分表示,真实路径的M点坐标为,而可能路径对应的点的坐标为,则函数L的等时变分则为可能运动的拉格朗日函数为真实的运动的拉格朗日函数为泛函变分为由于始末两点固定,所以上式右边第一项为零,则上式变为根据泛函的极值条件,此式应为零。由于各广义坐标是相互独

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论