版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c2.如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是().A. B. C. D.3.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.4.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A.6 B.8 C.10 D.125.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4 B.3 C. D.6.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°7.下列计算中正确的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x8.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>19.下列各式中,正确的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t510.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.12.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为_____.13.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.14.点C在射线AB上,若AB=3,BC=2,则AC为_____.15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.16.若代数式的值不小于代数式的值,则x的取值范围是_____.17.如图,在△ABC中,AB=AC=2,BC=1.点E为BC边上一动点,连接AE,作∠AEF=∠B,EF与△ABC的外角∠ACD的平分线交于点F.当EF⊥AC时,EF的长为_______.三、解答题(共7小题,满分69分)18.(10分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.19.(5分)如图1,抛物线l1:y=﹣x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣5).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.20.(8分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.21.(10分)如图,热气球的探测器显示,从热气球A看一栋髙楼顶部B的仰角为30°,看这栋高楼底部C的俯角为60°,热气球A与高楼的水平距离为120m,求这栋高楼BC的高度.22.(10分)已知:如图,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN.(1)求证:四边形ENFM为平行四边形;(2)当四边形ENFM为矩形时,求证:BE=BN.23.(12分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.24.(14分)某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
根据数轴上点的位置确定出a,b,c的范围,判断即可.【详解】由数轴上点的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故选A.【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键.2、B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形,∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.3、B【解析】
观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.4、C【解析】
连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.5、C【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.【详解】设I的边长为x根据题意有解得或(舍去)故选:C.【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.6、C【解析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.7、C【解析】
根据合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义逐项求解,利用排除法即可得到答案.【详解】A.x2+x2=2x2,故不正确;B.x6÷x3=x3,故不正确;C.(x3)2=x6,故正确;D.x﹣1=,故不正确;故选C.【点睛】本题考查了合并同类项的方法、同底数幂的除法法则、幂的乘方、负整数指数幂的意义,解答本题的关键是熟练掌握各知识点.8、B【解析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.9、D【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.10、B【解析】
解:根据题意可得:∴反比例函数处于二、四象限,则在每个象限内为增函数,且当x<0时y>0,当x>0时,y<0,∴<<.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中点,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.12、113°或92°【解析】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°.∵△ACD是等腰三角形,∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD.①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)÷2=67°,∴∠ACB=67°+46°=113°;②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°.故答案为113°或92°.13、2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.14、2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.15、1【解析】
画出图形,设菱形的边长为x,根据勾股定理求出周长即可.【详解】当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22,
解得:x=,∴4x=1,
即菱形的最大周长为1cm.
故答案是:1.【点睛】解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.16、x≥【解析】
根据题意列出不等式,依据解不等式得基本步骤求解可得.【详解】解:根据题意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案为x≥.【点睛】本题主要考查解不等式得基本技能,熟练掌握解一元一次不等式的基本步骤是解题的关键.17、1+【解析】
当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,即可得到AE⊥BC,依据Rt△CFG≌Rt△CFH,可得CH=CG=,再根据勾股定理即可得到EF的长.【详解】解:如图,当AB=AC,∠AEF=∠B时,∠AEF=∠ACB,当EF⊥AC时,∠ACB+∠CEF=90°=∠AEF+∠CEF,∴AE⊥BC,∴CE=BC=2,又∵AC=2,∴AE=1,EG==,∴CG==,作FH⊥CD于H,∵CF平分∠ACD,∴FG=FH,而CF=CF,∴Rt△CFG≌Rt△CFH,∴CH=CG=,设EF=x,则HF=GF=x-,∵Rt△EFH中,EH2+FH2=EF2,∴(2+)2+(x-)2=x2,解得x=1+,故答案为1+.【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.三、解答题(共7小题,满分69分)18、(1);(2)【解析】
(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1);(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.19、(1)抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【解析】
(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CH⊥PG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为﹣1,4,①当﹣1<x≤4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;②当4<x≤1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)∵抛物线l1:y=﹣x2+bx+3对称轴为x=1,∴x=﹣=1,b=2,∴抛物线l1的函数表达式为:y=﹣x2+2x+3,当y=0时,﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),设抛物线l2的函数表达式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴抛物线l2的函数表达式;y=x2﹣4x﹣1;(2)作CH⊥PG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣4x﹣1),∵MN∥y轴,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①当﹣1<x≤4时,MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,显然﹣1<≤4,∴当x=时,MN有最大值12.1;②当4<x≤1时,MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,显然当x>时,MN随x的增大而增大,∴当x=1时,MN有最大值,MN=2(1﹣)2﹣=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1.【点睛】本题是二次函数与几何综合题,主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.20、(1)证明过程见解析;(2)1.【解析】试题分析:(1)连接OD,由CD是⊙O切线,得到∠ODC=90°,根据AB为⊙O的直径,得到∠ADB=90°,等量代换得到∠BDC=∠ADO,根据等腰直角三角形的性质得到∠ADO=∠A,即可得到结论;(2)根据垂直的定义得到∠E=∠ADB=90°,根据平行线的性质得到∠DCE=∠BDC,根据相似三角形的性质得到,解方程即可得到结论.试题解析:(1)连接OD,∵CD是⊙O切线,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB为⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE•AE,∴11=2(2+AD),∴AD=1.考点:(1)切线的性质;(2)相似三角形的判定与性质.21、这栋高楼的高度是【解析】
过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】过点A作AD⊥BC于点D,依题意得,,,AD=120,在Rt△ABD中,∴,在Rt△ADC中,∴,∴,答:这栋高楼的高度是.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中.对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.22、(1)证明见解析;(2)证明见解析.【解析】分析:(1)由已知条件易得∠EAG=∠FCG,AG=GC结合∠AGE=∠FGC可得△EAG≌△FCG,从而可得△EAG≌△FCG,由此可得EG=FG,同理可得MG=NG,由此即可得到四边形ENFM是平行四边形;(2)如下图,由四边形ENFM为矩形可得EG=NG,结合AG=CG,∠AGE=∠CGN可得△EAG≌△NCG,则∠BAC=∠ACB,AE=CN,从而可得AB=CB,由此可得BE=BN.详解:(1)∵四边形ABCD为平行四四边形边形,∴AB//CD.∴∠EAG=∠FCG.∵点G为对角线AC的中点,∴AG=GC.∵∠AGE=∠FGC,∴△EAG≌△FCG.∴EG=FG.同理MG=NG.∴四边形ENFM为平行四边形.(2)∵四边形ENFM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽车用灭火设备市场需求与消费特点分析
- 睡袋市场发展现状调查及供需格局分析预测报告
- 2024年度大连地区雷电防护工程设计与施工合同
- 2024年度建筑施工合同工程质量与安全标准
- 局部感应空调市场发展现状调查及供需格局分析预测报告
- 电咖啡研磨机市场发展预测和趋势分析
- 2024年度员工福利计划合同
- 2024年度环境评估外包合同
- 2024年度地毯行业产业链整合与合作合同
- 2024年度大型活动安防保障服务合同
- 石油炼化公司高压加氢装置APC项目技术附件方案
- Proteus软件在电子技术实践教学中的应用
- 国有企业人才培训实施方案
- 休克诊治的误区和教训
- 中医操作流程图(全)
- 智慧农业合作合同协议书范本
- 高速公路改扩建中央分隔带光缆保通实施性方案
- 火电企业11项专业技术监督检查评估标准(送审稿)(12-31原始)
- 用电检查培训
- 西南石油大学 《油藏工程》教学提纲+复习提纲)PPT精品文档
- 莫迪温产品介绍
评论
0/150
提交评论