2023届北京市精华校中考一模数学试题含解析及点睛_第1页
2023届北京市精华校中考一模数学试题含解析及点睛_第2页
2023届北京市精华校中考一模数学试题含解析及点睛_第3页
2023届北京市精华校中考一模数学试题含解析及点睛_第4页
2023届北京市精华校中考一模数学试题含解析及点睛_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图是某个几何体的展开图,该几何体是()A.三棱柱 B.圆锥 C.四棱柱 D.圆柱2.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=133.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数4.下列方程中,两根之和为2的是()A.x2+2x﹣3=0 B.x2﹣2x﹣3=0 C.x2﹣2x+3=0 D.4x2﹣2x﹣3=05.已知:如图,在扇形中,,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为()A. B. C. D.6.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A. B. C. D.7.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变8.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30° B.60° C.90° D.45°9.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空题(共7小题,每小题3分,满分21分)11.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,则2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,计算出1+3+32+33+…+32018的值为_____.12.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.13.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留14.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b____c(用“>”或“<”号填空)15.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连接BC并延长交AE于点D.若AOC=80°,则ADB的度数为()A.40°B.50°C.60°D.20°16.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.17.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.三、解答题(共7小题,满分69分)18.(10分)计算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.19.(5分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.20.(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.21.(10分)阅读(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.22.(10分)先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.23.(12分)如图,已知AB是⊙O的弦,C是的中点,AB=8,AC=,求⊙O半径的长.24.(14分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:1.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈,tan63.4°≈2)

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】

侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.

故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..2、A【解析】试题解析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=299-12∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A.考点:1.平均数;2.中位数.3、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差4、B【解析】

由根与系数的关系逐项判断各项方程的两根之和即可.【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,△=(-2)2-4×3=-8<0,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键.5、D【解析】

如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式来求的长【详解】解:如图,连接OD.解:如图,连接OD.

根据折叠的性质知,OB=DB.

又∵OD=OB,

∴OD=OB=DB,即△ODB是等边三角形,

∴∠DOB=60°.

∵∠AOB=110°,

∴∠AOD=∠AOB-∠DOB=50°,

∴的长为=5π.

故选D.【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.6、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.7、D【解析】

根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.8、B【解析】【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.【详解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所对的圆周角是圆心角的一半),故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、D【解析】

分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:(2+3+4)=3,中位数是3,方差为:[(2﹣3)2+(3﹣3)2+(3﹣4)2]=;3、4、5的平均数为:(3+4+5)=4,中位数是4,方差为:[(3﹣4)2+(4﹣4)2+(5﹣4)2]=;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.10、C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.二、填空题(共7小题,每小题3分,满分21分)11、【解析】

仿照已知方法求出所求即可.【详解】令S=1+3+32+33+…+32018,则3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案为:.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.12、7【解析】设树的高度为m,由相似可得,解得,所以树的高度为7m13、【解析】

直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.故答案为6π.【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.14、<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1<a+2,所以b<c.15、B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.16、【解析】

本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=12=600000cm=6km.故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.17、【解析】

根据∠A的正弦求出∠A=60°,再根据30°的正弦值求解即可.【详解】解:∵,∴∠A=60°,∴.故答案为.【点睛】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.三、解答题(共7小题,满分69分)18、1.【解析】

直接利用绝对值的性质以及零指数幂的性质和负指数幂的性质分别化简得出答案.【详解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂,解题的关键是掌握幂的运算法则.19、(1)见解析;(2)见解析;(3)AG=1.【解析】

(1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.(2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.(3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.【详解】(1)证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°,而CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠2,∵C是劣弧AE的中点,∴,∴∠1=∠B,∴∠1=∠2,∴AF=CF;(3)解:∵CG∥AE,∴∠FAD=∠G,∵sinG=0.6,∴sin∠FAD==0.6,∵∠CDA=90°,AF=CF=4,∴DF=2.4,∴AD=3.2,∴CD=CF+DF=6.4,∵AF∥CG,∴,∴∴DG=,∴AG=DG﹣AD=1.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.20、(1)41(2)15%(3)【解析】

(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.21、(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:全等三角形的判定和性质;三角形的三边关系定理.22、;【解析】

先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得.【详解】原式=÷(﹣)===,当a=2cos30°+1=2×+1=+1,b=tan45°=1时,原式=.【点睛】本题主要考查分式的化简求值,在化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论