版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数理统计的基本知识引言到了十九世纪末二十世纪初,随着近代数学和概率论的发展,才真正诞生了数理统计学这门学科.从历史的典籍中,人们不难发现许多关于钱粮、户口、地震、水灾等等的记载,说明人们很早就开始了统计的工作.但是当时的统计,只是对有关事实的简单记录和整理,而没有在一定理论的指导下,作出超越这些数据范围之外的推断.数理统计学是一门应用性很强的学科.它是研究怎样以有效的方式收集、整理和分析带有随机性的数据,以便对所考察的问题作出推断和预测,直至为采取一定的决策和行动提供依据和建议.引言数理统计不同于一般的资料统计,它更侧重于应用随机现象本身的规律性进行资料的收集、整理和分析.
由于大量随机现象必然呈现出它的规律性,因而从理论上讲,只要对随机现象进行足够多次观察,被研究的随机现象的规律性一定能清楚地呈现出来.但在客观上只允许我们对随机现象进行次数不多的观察试验,也就是说,我们获得的只是局部观察资料.引言数理统计方法具有“部分推断整体”的特征.引言数理统计的基本思想:从所要研究对象的全体中,抽取一小部分进行观测或试验。以取得信息,从而对整体做出推断。每个推断必须伴随一定的概率,以表明推断的可靠性。(数理推断)数理统计的基本任务:以大数定律、中心极限定理为理论基础,根据实际掌握的部分信息对有关主体试验的分布、数字特征做出估计并加以检验的数理推断。
一个统计问题总有它明确的研究对象.1.总体研究对象的全体称为总体(母体),总体中所包含的个体的个数称为总体的容量.总体中每个成员称为个体,总体有限总体无限总体一、总体和样本在数理统计研究中,人们往往研究有关对象的某一项(或几项)数量指标和.为此,对这一指标进行随机试验,观察试验结果全部观察值,从而考察该数量指标的分布情况.
这时,每个具有的数量指标的全体就是总体.每个数量指标就是个体.某批灯泡的寿命该批灯泡寿命的全体就是总体国产轿车每公里的耗油量国产轿车每公里耗油量的全体就是总体一、总体和样本因此在理论上可以把总体与概率分布等同起来.由于每个个体的出现是随机的,所以相应的数量指标的出现也带有随机性.从而可以把这种数量指标看作一个随机变量X
,因此随机变量X的分布就是该数量指标在总体中的分布.
总体就可以用一个随机变量及其分布来描述.一、总体和样本例如:研究某批灯泡的寿命时,关心的数量指标就是寿命,那么,此总体就可以用随机变量X表示,或用其分布函数F(x)表示.某批灯泡的寿命总体
寿命X可用一概率(指数)分布来刻划一、总体和样本F(x)
类似地,在研究某地区中学生的营养状况时,若关心的数量指标是身高和体重,我们用X和Y分别表示身高和体重,那么此总体就可用二维随机变量(X,Y)或其联合分布函数F(x,y)来表示.
统计中,总体这个概念的要旨是:总体就是一个随机变量或概率分布.一、总体和样本总体分布一般是未知,或只知道是包含未知参数的分布,为推断总体分布及各种特征,按一定规则从总体中抽取若干个体进行观察试验,以获得有关总体的信息,这一抽取过程称为
“抽样”,所抽取的部分个体称为样本.
样本中所包含的个体数目称为样本容量.2.样本从国产轿车中抽5辆进行耗油量试验样本容量为5抽到哪5辆是随机的一、总体和样本
一旦取定一组样本X1,…,Xn,得到n个具体的数(x1,x2,…,xn),称为样本的一次观察值,简称样本值
.n称为这个样本的容量.1.
代表性:
X1,X2,…,Xn中每一个与所考察的总体有相同的分布.2.
独立性:
X1,X2,…,Xn是相互独立的随机变量.一、总体和样本一、总体和样本简单样本是一种理想化的样本.如何才能得到简单样本呢?对于有限总体,若采用有放回抽取,则可得到简单样本;若采用无放回抽取,则无法保证每次抽取的独立性,但若有限总体容量较样本容量很大时,无放回抽取与有放回抽取区别很小,亦可采用无放回抽取得到简单样本.对于无限总体,抽取部分个体后放回与否对总体成分影响不大,因此可采用不放回抽取获得简单样本.
简单随机样本是应用中最常见的情形,今后,当说到“X1,X2,…,Xn是取自某总体的样本”时,若不特别说明,就指简单随机样本.=F(x1)F(x2)…F(xn)
若总体的分布函数为F(x)、概率密度函数为f(x),则其简单随机样本的联合分布函数为其简单随机样本的联合概率密度函数为=f(x1)f(x2)…f(xn)
一、总体和样本解:例1一、总体和样本解:例2一、总体和样本一、总体和样本
事实上我们抽样后得到的资料都是具体的、确定的值.如我们从某班大学生中抽取10人测量身高,得到10个数,它们是样本取到的值而不是样本.我们只能观察到随机变量取的值而见不到随机变量.3.总体、样本、样本值的关系一、总体和样本总体(理论分布)?
样本
样本值统计是从手中已有的资料--样本值,去推断总体的情况---总体分布F(x)的性质.总体分布决定了样本取值的概率规律,也就是样本取到样本值的规律,因而可以由样本值去推断总体.样本是联系二者的桥梁一、总体和样本例3
为对某小麦杂交组合F2代的株高X进行研究,抽取容量为100的样本,测试的原始数据记录如下(单位:厘米),试根据以上数据,画出它的频率直方图,求随机变量X的分布状况.
87 88 111 91 73 70 92 98 105 9499 91 98 110 98 97 90 83 92 8886 94 102 99 89 104 94 94 92 9687 94 92 86 102 88 75 90 90 8084 91 82 94 99 102 91 96 94 9485 88 80 83 81 69 95 80 97 9296 109 91 80 80 94 102 80 86 9190 83 84 91 87 95 76 90 91 77103 89 88 85 95 92 104 92 95 8386 81 86 91 89 83 96 86 75 92二、分布密度的近似求法1.找出数据中最小值m=69,最大值M=111,极差为
M-m=422.数据分组,根据样本容量n的大小,决定分组数k。一般规律30≤n≤405≤k≤640≤n≤606≤k≤860≤n≤1008≤k≤10100≤n≤50010≤k≤20二、分布密度的近似求法方法:整理原始数据,加工为分组资料,作出频率分布表,画直方图,提取样本分布特征的信息.步骤如下:一般采取等距分组(也可以不等距分组),本例取k=9.本例测量单位为1厘米,组距为二、分布密度的近似求法组距=极差/组数3.确定组限和组中点值。注意:组的上限与下限应比数据多一位小数。当取a=67.5,b=112.49(a略小于m,b略大于M,且a和b都比数据多一位小数),分组如下:一般根据:各组中点值
组距=组的上限或下限[67.5,72.5)[72.5,77.5)[77.5,82.5)[82.5,87.5)[87.5,92.5)[92.5,97.5)[97.5,102.5)[102.5,107.5)[107.5,112.5)组中值分别为:707580859095100105110二、分布密度的近似求法组序区间范围频数fj频率Wj=fj/n累计频率Fj1[67.5,72.5)20.020.022[72.5,77.5)50.050.073[77.5,82.5)100.100.174[82.5,87.5)180.180.355[87.5,92.5)300.30.656[92.5,97.5)180.180.837[97.5,102.5)100.10.938[102.5,107.5)40.040.979[107.5,112.5)30.031.004.将数据分组,计算各组频数,作频数、频率分布表二、分布密度的近似求法5.作出频率直方图以样本值为横坐标,频率/组距为纵坐标;以分组区间为底,以为高作小矩形.作频率直方图二、分布密度的近似求法从频率直方图可看到:靠近两个极端的数据出现比较少,而中间附近的数据比较多,即中间大两头小的分布趋势,——随机变量分布状况的最粗略的信息.在频率直方图中,每个矩形面积恰好等于样本值落在该矩形对应的分组区间内的频率,即频率直方图中的小矩形的面积近似地反映了样本数据落在某个区间内的可能性大小,故它可近似描述X的分布状况.二、分布密度的近似求法三、分布函数的近似求法即不大于x的观察值的频率.三、分布函数的近似求法三、分布函数的近似求法例4抽取了某企业10个月的盈利额(单位:万元)3.22.5-42.50322.542设X为月盈利额,求X的经验分布函数并画图.解:将样本值由小到大排列为-4<0<2=2<2.5=2.5=2.5<3<3.2<4则其经验分布函数为三、分布函数的近似求法三、分布函数的近似求法对于任何实数x,等于在n次重复独立试验中事件的频率,由频率与概率的关系知,可作为总体X的分布函数F(x)的近似,且当样本容量充分大时,几乎为F(x).若总体X是离散型,图形呈跳跃上升的阶梯曲线(累计频率曲线),若观察值不重复,则每次跳跃高度是1/n,若观察值有重复,则按重复次数的1/n倍跳跃.若总体是连续型,只要大致连接各阶梯中点即可.
由样本值去推断总体情况,需要对样本值进行“加工”,这就要构造一些样本的函数,它把样本中所含的(某一方面)的信息集中起来.1.统计量
这种不含任何未知参数的样本的函数称为统计量.它是完全由样本决定的量.四、统计量定义例四、统计量未知,为来自X的样本,则是统计量,不是统计量.注意:四、统计量1.统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度旅游项目开发与运营管理合同
- 2024年度技术服务合同服务项目及技术支持期限
- 睡眠用眼罩市场发展现状调查及供需格局分析预测报告
- 影碟播放机市场发展现状调查及供需格局分析预测报告
- 2024年度技术转让合同:某生物科技公司基因技术转让
- 贴纸文具市场需求与消费特点分析
- 2024年度专利许可使用及技术转让合同标的研究
- 2024年度物业服务合同关键内容解析
- 04年承包居间合同:智能家居产品代理销售
- 自显影胶片照相机市场需求与消费特点分析
- 生物信息学概论智慧树知到期末考试答案章节答案2024年中南大学
- 电视剧固定投资回报合同协议书范本
- 工会选举选票及汇总表.doc
- 笛卡尔曲线方程和图[图文借鉴]
- 新人教版二年级上册数学第八单元教材分析
- 第三章--纳维-斯托克斯方程组
- 强制检定工作计量器具备案承诺书.doc
- 《夏洛特的网》导读题
- 高智商犯罪鹤岗128大案纪要
- 低压配电施工方案(完整版)
- 能源审计报告
评论
0/150
提交评论