北理工随机信号分析实验_第1页
北理工随机信号分析实验_第2页
北理工随机信号分析实验_第3页
北理工随机信号分析实验_第4页
北理工随机信号分析实验_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实验一随机序列的产生及数字特征估计实验目的1、学习和掌握随机数的产生方法。2、实现随机序列的数字特征估计。实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。(0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:序列为产生的(0,1)均匀分布随机数。下面给出了上式的3组常用参数:1、,周期;2、(IBM随机数发生器)周期;3、(ran0)周期;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。定理1.1若随机变量X具有连续分布函数FX(x),而R为(0,1)均匀分布随机变量,则有由这一定理可知,分布函数为FX(x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。2、MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x=rand(m,n)功能:产生m×n的均匀分布随机数矩阵。(2)正态分布的随机序列函数:randn用法:x=randn(m,n)功能:产生m×n的标准正态分布随机数矩阵。如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。(3)其他分布的随机序列MATLAB上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。MATLAB中产生随机数的一些函数3、随机序列的数字特征估计对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X(n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X(n)的均值、方差和自相关函数的估计为利用MATLAB的统计分析函数可以分析随机序列的数字特征。(1)均值函数函数:mean用法:m=mean(x)功能:返回按上面第一式估计X(n)的均值,其中x为样本序列x(n)。(2)方差函数函数:var用法:sigma2=var(x)功能:返回按上面第二式估计X(n)的方差,其中x为样本序列x(n),这一估计为无偏估计。(3)互相关函数函数:xcorr用法:c=xcorr(x,y)c=xcorr(x)c=xcorr(x,y,'opition')c=xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。option选项可以设定为:'biased'有偏估计,即'unbiased'无偏估计,即按上面第三式估计。'coeff'm=0时的相关函数值归一化为1。'none'不做归一化处理。实验内容1、采用线性同余法产生均匀分布随机数1000个,计算该序列均值和方差与理论值之间的误差大小。改变样本个数重新计算。代码及结果:>>Num=input('Num=');>>N=2^31;>>k=2^16+3;>>Y=zeros(1,num);>>X=zeros(1,num);>>Y(1)=1;>>fori=2:num>>Y(i)=mod(k*Y(i-1),N);>>end>>X=Y/N;>>a=0;>>b=1;>>m0=(a+b)/2;>>sigma0=(b-a)^2/12;>>m=mean(X);>>sigma=var(X);>>delta_m=abs(m-m0);>>delta_sigma=abs(sigma-sigma0);>>plot(X,'k');>>xlabel('n');>>ylabel('X(n)');>>delta_m>>delta_sigma>>axistightNum=1000delta_=0.0110delta_sigma=0.0011Num=5000delta_m=2.6620e-04delta_sigma=0.0020可以看出,样本值取得越大,实际值与理论值越接近,相差越小。2、参数为的指数分布的分布函数为利用反函数法产生参数为0.5的指数分布随机数1000个,测试其方差和相关函数。实验代码及结果:>>R=rand(1,1000);>>lambda=0.5;>>X=-log(1-R)/lambda;>>DX=var(X);>>[Rm,m]=xcorr(X);>>subplot(211);>>plot(X,'k');xlabel('n');ylabel('X(n)');axistight;>>subplot(212);>>plot(m,Rm,'k');xlabel('m');ylabel('R(m)');axistight;DX=4.1201理论上方差的值为1/(0.5^2)=4,实际值为4.1201,因为取样个数有限,导致存在一定偏差。但大体相近。3、产生一组N(1,4)分布的高斯随机数(1000个样本),估计该序列的均值、方差和相关函数。实验代码及结果:>>X=normrnd(1,2,[1,1000]);>>Mx=mean(X);Dx=var(X);>>[Rm,m]=xcorr(X);>>subplot(211);>>plot(X,'k');xlabel('n');ylabel('X(n)');axistight;>>subplot(212);>>plot(m,Rm,'k');xlabel('m');ylabel('R(m)');axistight;Mx=0.9937Dx=3.8938理论上的均值为1,方差为4。而在实验中得到的均值为0.9937,方差为3.8938。考虑到取样点有限,误差可以接受,理论值和实验值基本相同。实验二随机过程的模拟与数字特征一、实验目的1、学习利用MATLAB模拟产生随机过程的方法。2、熟悉和掌握特征估计的基本方法及其MATLAB实现。二、实验原理1、正态分布白噪声序列的产生MATLAB提供了许多产生各种分布白噪声序列的函数,其中产生正态分布白噪声序列的函数为randn。函数:randn用法:x=randn(m,n)功能:产生m×n的标准正态分布随机数矩阵。如果要产生服从分布的随机序列,则可以由标准正态随机序列产生。如果N(0,1),则。2、相关函数估计MATLAB提供了函数xcorr用于自相关函数的估计。函数:xcorr用法:c=xcorr(x,y)c=xcorr(x)c=xcorr(x,y,'opition')c=xcorr(x,'opition')功能:xcorr(x,y)计算X(n)与Y(n)的互相关,xcorr(x)计算X(n)的自相关。option选项可以设定为:'biased'有偏估计。'unbiased'无偏估计。'coeff'm=0时的相关函数值归一化为1。'none'不做归一化处理。3、功率谱估计MATLAB函数periodogram实现了周期图法的功率谱估计。函数:periodogram用法:[Pxx,w]=periodogram(x)[Pxx,w]=periodogram(x,window)[Pxx,w]=periodogram(x,window,nfft)[Pxx,f]=periodogram(x,window,nfft,fs)periodogram(...)功能:实现周期图法的功率谱估计。其中:Pxx为输出的功率谱估计值;f为频率向量;w为归一化的频率向量;window代表窗函数,这种用法对数据进行了加窗,对数据加窗是为了减少功率谱估计中因为数据截断产生的截断误差,下图列出了产生常用窗函数的MATLAB函数。nfft设定FFT算法的长度;fs表示采样频率;三、实验内容1、按如下模型产生一组随机序列其中是均值为1,方差为4的正态分布白噪声序列。估计过程的自相关函数和功率谱。实验代码及结果:>>y0=randn(1,500);%产生一长度为500的随机序列>>y=1+2*y0;>>x(1)=y(1);>>n=500;>>fori=2:1:n>>x(i)=0.8*x(i-1)+y(i);%按题目要求产生随机序列>>x(n)=0.8x(n-1)+w(n)>>end>>subplot(311);>>plot(x);>>title('x(n)');>>subplot(312);>>c=xcorr(x);%用xcorr函数求x(n)的自相关函数>>plot(c);>>title('R(n)');>>p=periodogram(x);%用periodogram函数求功率谱密度>>subplot(313);>>plot(p);>>title('S(w)');得到长度为500的样本序列分布、自相关函数及功率谱如下:2、设信号为其中,为正态分布白噪声序列,试在N=256和N=1024点时,分别产生随机序列x(n),画出x(n)的波形并估计x(n)的相关函数和功率谱。实验代码及结果:(1)N=256时>>N=256;>>w=randn(1,N);%用randn函数产生一个长度为256的正态分布白噪声序列>>n=1:1:N;>>f1=0.05;>>f2=0.12;>>x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n);%产生题目所给信号>>R=xcorr(x);%求x(n)的自相关函数>>p=periodogram(x);%求x的功率谱>>subplot(311);>>plot(x);title('x(n)');>>subplot(312);>>plot(R);title('R(n)');>>subplot(313);>>plot(p);title('S(w)');得到长度为256的样本序列分布、自相关函数及功率谱:(2)N=1024时>>N=1024;>>w=randn(1,N);%用randn函数产生一个长度为256的正态分布白噪声序列>>n=1:1:N;>>f1=0.05;>>f2=0.12;>>x=sin(2*pi*f1*n)+2*cos(2*pi*f2*n)+w(n);%产生题目所给信号>>R=xcorr(x);%求x(n)的自相关函数>>p=periodogram(x);%求x的功率谱>>subplot(311);>>plot(x);title('x(n)');>>subplot(312);>>plot(R);title('R(n)');>>subplot(313);>>plot(p);title('S(w)');得到长度为1024的样本序列、序列的自相关函数、序列的功率谱如下:实验三随机过程通过线性系统的分析一、实验目的1、理解和分析白噪声通过线性系统后输出的特性。2、学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。二、实验原理1、白噪声通过线性系统设连续线性系统的传递函数为H()或H(s),输入白噪声的功率谱密度为SX()=N0/2,那么系统输出的功率谱密度为SY(ω)=|H(ω)|2∙N02 输出自相关函数为RY(τ)=N04π-∞∞|H(ω)|2输出相关系数为γyτ=输出相关时间为τ0=0∞γy输出平均功率为EY2(τ)=N02π0∞|上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性|H(ω)|决定,不再是常数。2、等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的H(ω),因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。实际系统的等效噪声带宽为∆ωe=1|H(ω)|max20∞|H(ω)|或∆ωe=12j|H(ω)|max3、线性系统输出端随机过程的概率分布(1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。三、实验内容1、仿真一个平均功率为1的白噪声带通系统,白噪声为高斯分布,带通系统的两个截止频率分别为3kHz和4kHz,估计输出的自相关函数和功率谱密度函数。(假设采样频率为10kHz)实验代码及结果:>>Fs=10000;%采样频率10KHz>>x=randn(1000,1);%产生随机序列>>figure(1);>>subplot(3,1,1);>>plot(x);gridon;%x的分布>>xlabel('t');>>subplot(3,1,2);>>x_corr=xcorr(x,'unbiased');%自相关函数>>plot(x_corr);>>gridon;>>subplot(3,1,3);>>[Pxx,w]=periodogram(x);%功率谱密度>>x_Px=Pxx;plot(x_Px);>>gridon;>>figure(2);>>subplot(2,1,1);>>xlabel('f/Hz');>>[x_pdf,x1]=ksdensity(x);%平滑密度分布函数估计>>plot(x1,x_pdf);>>gridon;>>subplot(2,1,2);>>f=(0:999)/1000*Fs;>>X=fft(x);%求DFT>>mag=abs(X);>>plot(f(1:1000/2),mag(1:1000/2));%幅频特性>>gridon;>>xlabel('f/Hz');>>figure(3);>>subplot(3,1,1);>>[b,a]=ellip(10,0.5,50,[3000,4000]*2/Fs);%构造带通滤波器>>[H,w]=freqz(b,a);>>plot(w*Fs/(2*pi),abs(H));%画出滤波器频率特性>>set(gcf,'color','white')>>xlabel('f/Hz');>>ylabel('H(w)');>>gridon;>>subplot(3,1,2);>>y=filter(b,a,x);%通过带通滤波器>>[y_pdf,y1]=ksdensity(y);%绘出通过后的概率分布>>plot(y1,y_pdf);>>gridon;>>y_corr=xcorr(y,'unbiased');%自相关函数>>subplot(3,1,3);>>plot(y_corr);>>gridon;>>figure(4);>>Y=fft(y);%DFT>>magY=abs(Y);>>subplot(2,1,1);>>plot(f(1:1000/2),magY(1:1000/2));%幅频特性>>gridon;>>xlabel('f/Hz');>>subplot(2,1,2);>>nfft=1024;>>index=0:round(nfft/2-1);%下标>>ky=index.*Fs./nfft;>>window=boxcar(length(y_corr));%矩形窗>>[Pyy,fy]=periodogram(y_corr,window,nfft,Fs);%求功率谱密度>>y_Py=Pyy(index+1);>>plot(ky,y_Py);>>gridon;得到:2、设白噪声通过下图所示的RC电路,分析输出的统计特性。(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。(2)采用MATLAB模拟正态分布白噪声通过上述RC电路,观察输入和输出的噪声波形以及输出噪声的概率密度。(3)模拟产生均匀分布的白噪声通过上述RC电路,观察输入和输出的噪声波形以及输出噪声的概率密度。(4)改变RC电路的参数(电路的RC值),重做(2)和(3),与之前的结果进行比较。(1)由图中所示电路,根据电路分析的相关知识,可推导出输出功率谱密度为:相关函数为:相关时间为:等效噪声带宽为:(2)实验代码及结果:>>R=100;>>C=0.01;>>b=1/(R*C);>>n=1:1:500;>>h=b*exp(-n*b);>>x=randn(1,1000);>>y=conv(x,h);>>[fyy1]=ksdensity(y)>>subplot(3,1,1);>>plot(x);>>title('x(n)');>>subplot(3,1,2);>>plot(y);>>title('y(n)');>>subplot(3,1,3);>>plot(fy);>>title('fy');(3)实验代码及结果:>>R=100;>>C=0.01;>>b=1/(R*C);>>n=1:1:500;>>h=b*exp(-n*b);>>x=rand(1,1000);>>y=conv(x,h);>>[fyy1]=ksdensity(y);>>subplot(3,1,1);>>plot(x);>>title('x(n)');>>subplot(3,1,2);>>plot(y);>>title('y(n)');>>subplot(3,1,3);>>plot(fy);>>title('fy');实验结果:(4)改变RC值R=200,C=0.01;正态分布:均匀分布:R=10,C=0.01;正态分布:均匀分布:由图可得,系统相关时间与系统带宽成反比。另外,由输入输出波形可以看出,正态随机过程通过一个线性系统后,输出仍服从正态分布。而对于任意分布的白噪声,通过一个线性系统后,输出也服从正态分布。实验四窄带随机过程的产生及其性能测试一、实验目的1、基于随机过程的莱斯表达式产生窄带随机过程。2、掌握窄带随机过程的特性,包括均值(数学期望)、方差、相关函数及功率谱密度等。二、实验原理1.窄带随机过程的莱斯表达式任何一个实平稳窄带随机过程X(t)都可以表示为上式称为莱斯表达式,根据上式可以模拟产生窄带随机过程,具体过程下图所示。2.窄带随机过程包络与相位的概率密度包络的概率密度为fA相位的概率密度为fφφ3.窄带随机过程包络平方的概率密度包络平方的概率密度为fU三、实验内容1、按上图所示结构框图,基于随机过程的莱斯表达式,用MATLAB产生一满足条件的窄带随机过程。实验代码及结果:>>n=1:1:1000;>>h=exp(-n);>>c1=randn(1,1000);>>a=conv(c1,h);>>c2=randn(1,1000);>>b=conv(c2,h);>>fc=10000;>>x=zeros(1,1000);>>fori=1:1000>>x(i)=a(i)*cos(2*pi*fc*i)-b(i)*sin(2*pi*fc*i);>>end>>plot(x);>>title('窄带随机过程');实验结果:2、画出该随机过程的若干次实现,观察其形状。代码同上,得到图形:3、编写MATLAB程序计算该随机过程的均值函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论