2021-2022学年辽宁省普兰店市高三适应性调研考试数学试题含解析_第1页
2021-2022学年辽宁省普兰店市高三适应性调研考试数学试题含解析_第2页
2021-2022学年辽宁省普兰店市高三适应性调研考试数学试题含解析_第3页
2021-2022学年辽宁省普兰店市高三适应性调研考试数学试题含解析_第4页
2021-2022学年辽宁省普兰店市高三适应性调研考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线C:(,)的离心率是3,焦点到渐近线的距离为,则双曲线C的焦距为()A.3 B. C.6 D.2.函数在的图像大致为A. B. C. D.3.已知角的终边经过点,则A. B.C. D.4.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是().A. B. C. D.5.设全集,集合,.则集合等于()A. B. C. D.6.已知,若方程有唯一解,则实数的取值范围是()A. B.C. D.7.对两个变量进行回归分析,给出如下一组样本数据:,,,,下列函数模型中拟合较好的是()A. B. C. D.8.已知椭圆:的左、右焦点分别为,,点,在椭圆上,其中,,若,,则椭圆的离心率的取值范围为()A. B.C. D.9.陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的《帝京景物略》一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为()A. B.C. D.10.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141432341342234142243331112322342241244431233214344142134412由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.11.设集合,,则()A. B.C. D.12.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.的二项展开式中,含项的系数为__________.14.已知二项式的展开式中各项的二项式系数和为512,其展开式中第四项的系数__________.15.(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是____________.16.若直线与直线交于点,则长度的最大值为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)的内角,,的对边分别是,,,已知.(1)求角;(2)若,,求的面积.18.(12分)已知中,角,,的对边分别为,,,已知向量,且.(1)求角的大小;(2)若的面积为,,求.19.(12分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.20.(12分)在四边形中,,;如图,将沿边折起,连结,使,求证:(1)平面平面;(2)若为棱上一点,且与平面所成角的正弦值为,求二面角的大小.21.(12分)已知实数x,y,z满足,证明:.22.(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

根据焦点到渐近线的距离,可得,然后根据,可得结果.【详解】由题可知:双曲线的渐近线方程为取右焦点,一条渐近线则点到的距离为,由所以,则又所以所以焦距为:故选:A【点睛】本题考查双曲线渐近线方程,以及之间的关系,识记常用的结论:焦点到渐近线的距离为,属基础题.2.B【解析】

由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.3.D【解析】因为角的终边经过点,所以,则,即.故选D.4.A【解析】

作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可.【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴这个四棱锥中最长棱的长度是.故选.【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.5.A【解析】

先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.6.B【解析】

求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可.【详解】解:令,则,则,故,如图示:由,得,函数恒过,,由,,可得,,,若方程有唯一解,则或,即或;当即图象相切时,根据,,解得舍去),则的范围是,故选:.【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.7.D【解析】

作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线.【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D.【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好.8.C【解析】

根据可得四边形为矩形,设,,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.【详解】设,,由,,知,因为,在椭圆上,,所以四边形为矩形,;由,可得,由椭圆的定义可得,①,平方相减可得②,由①②得;令,令,所以,即,所以,所以,所以,解得.故选:C【点睛】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.9.C【解析】

根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.10.A【解析】

由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解.【详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为.故选:A.【点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题.11.D【解析】

利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,,由集合的交运算可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.12.D【解析】

根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

写出二项展开式的通项,然后取的指数为求得的值,则项的系数可求得.【详解】,由,可得.含项的系数为.故答案为:【点睛】本题考查了二项式定理展开式、需熟记二项式展开式的通项公式,属于基础题.14.【解析】

先令可得其展开式各项系数的和,又由题意得,解得,进而可得其展开式的通项,即可得答案.【详解】令,则有,解得,则二项式的展开式的通项为,令,则其展开式中的第4项的系数为,故答案为:【点睛】此题考查二项式定理的应用,解题时需要区分展开式中各项系数的和与各二项式系数和,属于基础题.15.2【解析】

由这五位同学答对的题数分别是,得该组数据的平均数,则方差.16.【解析】

根据题意可知,直线与直线分别过定点,且这两条直线互相垂直,由此可知,其交点在以为直径的圆上,结合图形求出线段的最大值即可.【详解】由题可知,直线可化为,所以其过定点,直线可化为,所以其过定点,且满足,所以直线与直线互相垂直,其交点在以为直径的圆上,作图如下:结合图形可知,线段的最大值为,因为为线段的中点,所以由中点坐标公式可得,所以线段的最大值为.故答案为:【点睛】本题考查过交点的直线系方程、动点的轨迹问题及点与圆的位置关系;考查数形结合思想和运算求解能力;根据圆的定义得到交点在以为直径的圆上是求解本题的关键;属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

(1)利用余弦定理可求,从而得到的值.(2)利用诱导公式和正弦定理化简题设中的边角关系可得,得到值后利用面积公式可求.【详解】(1)由,得.所以由余弦定理,得.又因为,所以.(2)由,得.由正弦定理,得,因为,所以.又因,所以.所以的面积.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.18.(1);(2).【解析】试题分析:(1)利用已知及平面向量数量积运算可得,利用正弦定理可得,结合,可求,从而可求的值;(2)由三角形的面积可解得,利用余弦定理可得,故可得.试题解析:(1)∵,,,∴,∴,即,又∵,∴,又∵,∴.(2)∵,∴,又,即,∴,故.19.(1)减区间是,增区间是;(2),证明见解析.【解析】

(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),,又,所以在单增,从而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.20.(1)证明见详解;(2)【解析】

(1)由题可知,等腰直角三角形与等边三角形,在其公共边AC上取中点O,连接、,可得,可求出.在中,由勾股定理可证得,结合,可证明平面.再根据面面垂直的判定定理,可证平面平面.(2)以为坐标原点,建立如图所示的空间直角坐标系,由点F在线段上,设,得出的坐标,进而求出平面的一个法向量.用向量法表示出与平面所成角的正弦值,由其等于,解得.再结合为平面的一个法向量,用向量法即可求出与的夹角,结合图形,写出二面角的大小.【详解】证明:(1)在中,为正三角形,且在中,为等腰直角三角形,且取的中点,连接,,,平面平面平面..平面平面(2)以为坐标原点,建立如图所示的空间直角坐标系,则,,,设.则设平面的一个法向量为.则,令,解得与平面所成角的正弦值为,整理得解得或(含去)又为平面的一个法向量,二面角的大小为.【点睛】本题考查了线面垂直的判定,面面垂直的判定,向量法解决线面角、二面角的问题,属于中档题.21.见解析【解析】

已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,...【点睛】本题考查柯西不等式的应用,属于基础题.22.(1)见解析;(2)【解析】

(1)根据面面垂直性质及线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论