2023届四川省广元市青川县数学九上期末学业水平测试模拟试题含解析_第1页
2023届四川省广元市青川县数学九上期末学业水平测试模拟试题含解析_第2页
2023届四川省广元市青川县数学九上期末学业水平测试模拟试题含解析_第3页
2023届四川省广元市青川县数学九上期末学业水平测试模拟试题含解析_第4页
2023届四川省广元市青川县数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列对二次函数的图象的描述,正确的是()A.开口向下 B.对称轴是轴C.当时,有最小值是 D.在对称轴左侧随的增大而增大2.如图,在中,,则等于()A. B. C. D.3.下列两个变量成反比例函数关系的是()①三角形底边为定值,它的面积S和这条边上的高线h;②三角形的面积为定值,它的底边a与这条边上的高线h;③面积为定值的矩形的长与宽;④圆的周长与它的半径.A.①④ B.①③ C.②③ D.②④4.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.5.如图,点是上的点,,则是()

A. B. C. D.6.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称 B.轴对称和平移C.平移和旋转 D.旋转和轴对称7.如图,为的直径,和分别是半圆上的三等分点,连接,若,则图中阴影部分的面积为()A. B. C. D.8.如图,BC是的直径,A,D是上的两点,连接AB,AD,BD,若,则的度数是()A. B. C. D.9.sin65°与cos26°之间的关系为()A.sin65°<cos26° B.sin65°>cos26°C.sin65°=cos26° D.sin65°+cos26°=110.如图,⊙是的外接圆,已知平分交⊙于点,交于点,若,,则的长为()A. B. C. D.11.在Rt△ABC中,∠C=90°,AB=5,内切圆半径为1,则三角形的周长为()A.15 B.12 C.13 D.1412.如图,四边形ABCD是矩形,点E在线段CB的延长线上,连接DE交AB于点F,∠AED=2∠CED,点G为DF的中点.若BE=1,AG=3,则AB的长是()A. B.2 C. D.二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,点E在AD边上,且AE:ED=1:2,若EF=4,则CE的长为___14.如图所示的两个四边形相似,则的度数是.15.如图,由四个全等的直角三角形围成的大正方形ABCD的面积为34,小正方形EFGH的面积为4,则tan∠DCG的值为_____.16.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).17.抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是____.18.如图,在中,,以点A为圆心,2为半径的与BC相切于点D,交AB于点E,交AC于点F,点P是上的一点,且,则图中阴影部分的面积为______.三、解答题(共78分)19.(8分)为做好全国文明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图.请根据所给信息,解答下列问题.(1)求这天“岁及以上行人”中每天违章人数的众数.(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为.(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议.20.(8分)如图,在平面直角坐标系中,一次函数的图像与轴交于点.二次函数的图像经过点,与轴交于点,与一次函数的图像交于另一点.(1)求二次函数的表达式;(2)当时,直接写出的取值范围;(3)平移,使点的对应点落在二次函数第四象限的图像上,点的对应点落在直线上,求此时点的坐标.21.(8分)小明和小亮两同学做游戏,游戏规则是:有一个不透明的盒子,里面装有两张红卡片,两张绿卡片,卡片除颜色外其他均相同,两人先后从盒子中取出一张卡片(不放回),若两人所取卡片的颜色相同,则小明获胜,否则小亮获胜.(1)请用画树状图或列表法列出游戏所有可能的结果;(2)请根据你的计算结果说明游戏是否公平,若不公平,你认为对谁有利?22.(10分)如图,抛物线与轴交于点,,与轴交于点.(1)求点,,的坐标;(2)将绕的中点旋转,得到.①求点的坐标;②判断的形状,并说明理由.(3)在该抛物线对称轴上是否存在点,使与相似,若存在,请写出所有满足条件的点的坐标;若不存在,请说明理由.23.(10分)如图,的直径为,点在上,点,分别在,的延长线上,,垂足为,.(1)求证:是的切线;(2)若,,求的长.24.(10分)如图,在一块长8、宽6的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.25.(12分)解方程:(1)x2-8x+6=0(2)x123x1026.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的性质分别判断后即可确定正确的选项.【详解】解:A、∵a=1>0,

∴抛物线开口向上,选项A不正确;

B、∵-=,

∴抛物线的对称轴为直线x=,选项B不正确;

C、当x=时,y=-,

∴当x=时,y有最小值是-,选项C正确;

D、∵a>0,抛物线的对称轴为直线x=,

∴当x>时,y随x值的增大而增大,选项D不正确.

故选:C.【点睛】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.2、D【分析】直接根据正弦的定义解答即可.【详解】在△ACB中,∠C=90°,

故选:D.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.3、C【分析】根据反比例函数的定义即可判断.【详解】①三角形底边为定值,它的面积S和这条边上的高线h是成正比例关系,故不符合题意;②三角形的面积为定值,它的底边a与这条边上的高线h是反比例函数关系;故符合题意;③面积为定值的矩形的长与宽;是反比例函数关系;故符合题意;④圆的周长与它的半径,是成正比例关系,故不符合题意.故选:C.【点睛】本题考查了反比例函数的解析式,解答本题的关键是根据题意列出函数关系式来进行判断,本题属于基础题型.4、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.5、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题.【详解】如下图所示:∵∠BDC=120°,∴优弧的度数为240°,∴劣弧度数为120°.∵劣弧所对的圆心角为∠BOC,∴∠BOC=120°.故选:A.【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系.6、D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【详解】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.7、B【分析】阴影的面积等于半圆的面积减去△ABC和△ABD的面积再加上△ABE的面积,因为△ABE的面积是△ABC的面积和△ABD的面积重叠部分被减去两次,所以需要再加上△ABE的面积,然后分别计算出即可.【详解】设相交于点和分别是半圆上的三等分点,为⊙O的直径..,如图,连接,则,故选.【点睛】此题主要考查了半圆的面积、圆的相关性质及在直角三角形中,30°角所对应的边等于斜边的一半,关键记得加上△ABE的面积是解题的关键.8、A【分析】连接AC,如图,根据圆周角定理得到,,然后利用互余计算的度数.【详解】连接AC,如图,∵BC是的直径,∴,∵,∴.故答案为.故选A.【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.9、B【分析】首先要将它们转换为同一种锐角三角函数,再根据函数的增减性进行分析.【详解】∵cos26°=sin64°,正弦值随着角的增大而增大,∴sin65°>cos26°.故选:B.【点睛】掌握正余弦的转换方法,了解锐角三角函数的增减性是解答本题的关键.10、A【分析】先根据角平分线的定义、圆周角定理可得,再根据相似三角形的判定定理得出,然后根据相似三角形的性质即可得.【详解】平分弧BD与弧CD相等又,即解得故选:A.【点睛】本题考查了角平分线的定义、圆周角定理、相似三角形的判定定理与性质,利用圆周角定理找到两个相似三角形是解题关键.11、B【分析】作出图形,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF可得四边形OECF是正方形,根据正方形的四条边都相等求出CE、CF,根据切线长定理可得AD=AF,BD=BE,从而得到AF+BE=AB,再根据三角形的周长的定义解答即可.【详解】解:如图,设内切圆⊙O与△ABC三边的切点分别为D、E、F,连接OE、OF,∵∠C=90°,∴四边形OECF是正方形,∴CE=CF=1,由切线长定理得,AD=AF,BD=BE,∴AF+BE=AD+BD=AB=5,∴三角形的周长=5+5+1+1=1.故选:B【点睛】本题考查了三角形的内切圆与内心,切线长定理,作辅助线构造出正方形是解题的关键,难点在于将三角形的三边分成若干条小的线段,作出图形更形象直观.12、B【分析】根据直角三角形斜边上的中线等于斜边的一半可得AG=DG,进而得到得∠ADG=∠DAG,再结合两直线平行,内错角相等可得∠ADG=∠CED,再根据三角形外角定理∠AGE=2∠ADG,从而得到∠AED=∠AGE,再得到AE=AG,然后利用勾股定理列式计算即可得解.【详解】解:∵四边形ABCD是矩形,点G是DF的中点,∴AG=DG,∴∠ADG=∠DAG,∵AD∥BC,∴∠ADG=∠CED,∴∠AGE=∠ADG+∠DAG=2∠CED,∵∠AED=2∠CED,∴∠AED=∠AGE,∴AE=AG=3,在Rt△ABE中,,故选:B.【点睛】本题考查了矩形的性质,等边对等角的性质,等角对等边的性质,以及勾股定理的应用,求出AE=AG是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据AE:ED=1:2,得到BC=3AE,证明△DEF∽△BCF,得到,求出FC,即可求出CE.【详解】解:∵AE:ED=1:2,∴DE=2AE,∵四边形ABCD是平行四边形,∴BC=AD=AE+DE=3AE,AD∥BC,∴△DEF∽△BCF,∴,∴∴FC=6,∴CE=EF+CF=1,故答案为:1.【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键.14、.【解析】由两个四边形相似,根据相似多边形的对应角相等,即可求得∠A的度数,又由四边形的内角和等于360°,即可求得∠α的度数.【详解】解:∵四边形ABCD∽四边形A′B′C′D′,

∴∠A=∠A′=138°,

∵∠A+∠B+∠C+∠D=360°,

∴∠α=360°-∠A-∠B-∠C=360°-60°-138°-75°==87°.

故答案为87°.【点睛】此题考查了相似多边形的性质.此题比较简单,解题的关键是掌握相似多边形的对应角相等定理的应用.15、【分析】根据大正方形的面积为,小正方形的面积为即可得到,,再根据勾股定理,即可得到,进而求得的值.【详解】由题意可知:大正方形的面积为,小正方形的面积为,四个直角三角形全等,设,则由勾股定理可得:在中,解之得:在中,故答案为【点睛】本题主要考查了勾股定理以及解直角三角形的应用,明确锐角三角函数的边角对应关系,设未知数利用勾股定理是解题关键.16、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).17、y=3(x﹣1)2﹣2【分析】根据图象向下平移减,向右平移减,即可得答案.【详解】抛物线y=3x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是y=3(x-1)2-2,故答案为y=3(x-1)2-2.【点睛】本题考查了二次函数图象与几何变换,解题的关键是用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.18、【分析】图中阴影部分的面积=S△ABC-S扇形AEF.由圆周角定理推知∠BAC=90°.【详解】解:连接AD,在⊙A中,因为∠EPF=45°,所以∠EAF=90°,AD⊥BC,S△ABC=×BC×AD=×4×2=4S扇形AFDE=,所以S阴影=4-故答案为:【点睛】本题考查了切线的性质与扇形面积的计算.求阴影部分的面积时,采用了“分割法”.三、解答题(共78分)19、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)【分析】(1)根据众数的概念求解可得;

(2)利用样本估计总体思想求解可得;

(3)根据折线图中的数据提出合理的建议均可,答案不唯一.【详解】(1)这天“岁及岁以上行人”中每天违章人数有三天是8人,出现次数最多,∴这天“岁及岁以上行人”中每天违章人数的众数为:;(2)估计出现交通违章行为的人数大约为:;(3)由折线统计图知,“岁及岁以上行人”违章次数明显多于“岁以下行人”,所以应加大对老年人的交通安全教育.(答案不唯一)【点睛】本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.20、(1);(2)或;(3).【分析】(1)先求出A,B的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C点坐标,再根据平移的性质得到,设点,则,把D点代入二次函数即可求解.【详解】解:(1)令,得,∴.把代入,解得.把,代入,得,∴,∴二次函数的表达式为.(2)由图像可知,当时,或.(3)令,则,∴.∵平移,∴,∴.设点,则,∴,∴,(舍去).∴.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的运用.21、(1)见解析;(2)不公平,对小亮有利,见解析.【解析】(1)采用树状图法或者列表法解答均可;

(2)列举出所有情况,看两人所取卡片的颜色相同和不同的情况占总情况的多少即可判断.【详解】解:(1)画树状图如下:(2)不公平,理由如下:由树状图知共有12种等可能结果,其中两种颜色相同的有4种结果,两种颜色不同的有8种结果,所以小明获胜的概率为,小亮获胜的概率为,因为>,所以小亮获胜的可能性大,故此游戏不公平.【点睛】本题考查游戏的公平性,解题的关键是正确的列出表格或树状图.用到的知识点为:概率=所求情况数与总情况数之比.22、(1),,;(2)①;②是直角三角形;(3),,,【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合A,B,C的坐标得出D点坐标;②利用勾股定理的逆定理判断的形状即可;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【详解】解:(1)令,则,解得:,,∴,.令,则,∴;(2)①过作轴于点,∵绕点旋转得到,∴,,在和中,∴,∴,.∵,,,∴,,,,∴,∵点在第四象限,∴;②是直角三角形,在中,,在中,,∴,∴是直角三角形;(3)存在∵,∴,∵,∴,作出抛物线的对称轴,∵M是AB的中点,,,∴M(,0),∴点M在对称轴上.∵点在对称轴上,∴设,当时,则,∴,,∴,∴,.当时,则,∴,,∴,∴,,∴,,,.【点睛】此题考查了二次函数与坐标轴的交点,全等三角形的判定与性质,勾股定理,二次函数的图像与性质,以及相似三角形的判定与性质等知识,正确分类讨论是解题关键.23、(1)见解析;(2)【分析】(1)连接OC,根据三角形的内角和得到∠EDC+∠ECD=90°,根据等腰三角形的性质得到∠A=∠ACO,得到∠OCD=90°,于是得到结论;

(2)根据已知条件得到OC=OB=AB=2,根据勾股定理即可得到结论.【详解】(1)证明:连接OC,

∵DE⊥AE,

∴∠E=90°,

∴∠EDC+∠ECD=90°,

∵∠A=∠CDE,

∴∠A+∠DCE=90°,

∵OC=OA,

∴∠A=∠ACO,

∴∠ACO+∠DCE=90°,

∴∠OCD=90°,

∴OC⊥CD,

∴CD是⊙O的切线;

(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论