下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2.教学目标1.用代入法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.重点、难点重点:代入消元法难点:用代入法解较难的二元一次方程组.教学过程复习1、什么叫二元一次方程组的解?2、若x=ay=b是方程2x+y=2的解,则8a3.已知4x-y=-1,用关于x的代数式表示y:___________;用关于y的代数式表示x:_________设计意图:复习以前学过的二元一次方程的知识,从而引出课题:用代入法解二元一次方程组。二、情景导入《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上,另一部分在地上.树上的一只鸽子对地上的鸽子说:“若从你们中飞上来一只,则地上的鸽子为整个鸽群的三分之一;若从树上飞下去一只,则树上、地上的鸽子一样多.”你知道树上、地上各有多少只鸽子吗?提问:此题怎么解呢?有几种解法?学生列出两种方法,即:方法一:设树上有x只鸽子,则由题意得:x+(x-2)=3[(x-2)-1]方法二:解:设树上有x只鸽子,地上有y只鸽子,得到方程组x+y=3(y-1)提问:以上方法一中的方程和方法二中的方程组有什么联系?三、探究新知如何解方程组:x+y=3(y-1)将第二个方程转化为y=x-2将y=x-2代入第一个方程得x+(x-2)=3[(x-2)-1],这个方程是我们已熟知的一元一次方程,解这个一元一次方程得x=_______,将x=_______代入y=x-2得y=_______,从而得到这个方程组的解.说明:全班同学独立作业,10分钟后交流成果.在此基础上引入消元思想、代入消元法概念.【归纳结论】1.解方程组时,将未知数的个数由多化少、逐一解决的思想,叫消元思想.2.把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.设计意图:通过让学生观察、思考、概括的一系列思维的心理操作的过程来培养学生的思维;同时让学生理解并掌握代入法,也增强了学生的表达能力和概括能力四、例题讲解例1:解方程组x-y=3学生独立解答此题并总结步骤。总结:用代入法解二元一次方程组的一般步骤将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;3、把这个未知数的值代入上面的式子,求得另一个未知数的值;4、写出方程组的解例2、用代入法解方程组x-2此方程组较复杂,如果利用去分母的方法解答的话,过程比较麻烦,所以我们引入代入法的另外一种情况,即设x-23=y+4同学们试着解答此题。设计意图:通过让学生观察、思考、合作交流和归纳等过程来培养学生的动手操作能力和合作的能力;同时让学生理解并掌握代入法解二元一次方程组的步骤。五、学以致用例3、根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g),两种产品的销售数量(按瓶计算)的比为2:5某厂每天生产这种消毒液吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?学生先根据题目找出等量关系,然后列出二元一次方程组,进行解答。为了方便学生理解可以用下面的图来说明已知x=-1y=2是关于x,y的方程组2解:将x=-1y=2代入方程组得:将②变形为:a=-2b-1③将③代入①得:-2+2(-2b-1)=3b解得:b=-将b=-47代入②得:-a-2解得:a=1设计意图:通过让学生思考应用来培养学生的解答问题的能力;同时让学生理解并二元一次方程的应用。六、随堂练习1.在方程2x-3y=6中,用含有x的代数式表示y,得()A.y=C.y=2.用代入法解方程组x=2yy-x=3A.直接把①代入②,消去yB.直接把①代入②,消去xC.直接把②代入①,消去yD.直接把②代入①,消去x3.二元一次方程组eq\b\lc\{(\a\vs4\al\co1(x+y=5,,2x-y=4))的解为()\b\lc\{(\a\vs4\al\co1(x=1,y=4))\b\lc\{(\a\vs4\al\co1(x=2,y=3))\b\lc\{(\a\vs4\al\co1(x=3,y=2))\b\lc\{(\a\vs4\al\co1(x=4,y=1))4.方程组eq\b\lc\{(\a\vs4\al\co1(x+y=12,,y=2))的解为____________.5.用代入法解下列方程组:eq\b\lc\{(\a\vs4\al\co1(y=2x-4,①,3x+y=1;②))6.小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少克?设计意图:通过练习,进一步巩固所学知识,及时发现和解决学生存在的问题;同时培养了学生养成动脑、动手、和合作交流的习惯.六、拓展延伸1.已知关于x,y的二元一次方程组eq\b\lc\{(\a\vs4\al\co1(x+2y=3,,3x+5y=m+2))的解满足x+y=0,求实数m的值.2.先阅读材料,然后解方程组.材料:解方程组x-y-1=0由①,得x-y=1.③把③代入②,得4×1-y=5,解得y=-1.把y=-1代入③,得x=0.∴原方程组的解为x=0这种方法称为“整体代入法”.你若留心观察,有很多方程组可采用此方法解答,请用这种方法解方程组:设计意图:这个环节是巩固本课知识点,通过设置不同层次的练习,来检测学生的掌握情况,在这部分的设计中,主要是发挥学生作为教学主体的主动性,让学生感受学习的乐趣和成功的喜悦。七、课堂小结1.代入消元法:由二元一次方程组中一个方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫代入消元法,简称代入法2.用代入法解二元一次方程组的一般步骤(1)将方程组里的一个方程变形,用含有一个未知数的式子表示另一个未知数;(2)用这个式子代替另一个方程中相应的未知数,得到一个一元一次方程,求得一个未知数的值;(3)把这个未知数的值代入上面的式子,求得另一个未知数的值;(4)写出方程组的解八、教学反思本课时在进行“代入消元法”时,遵循了“由浅入深、循序渐进”的原则,引导并强调学生观察未知数的系数,注意系数是1的未知数,针对这个系数进行等式变换,然后代入另一个方程.在这个教学过程中,学生的学习难点就是当未知数的系数不是1的情况,用含有一个字母的代数式表示另一个字母,教师应该引导学生熟练进行等式变换,这个过程教师往往忽略训练的深度和广度,要注意把握训练尺度.参考答案随堂练习1、C2、B3、C4、x=105、解:把方程①代入方程②,得3x+2x-4=1.解得x=1.把x=1代入①,得y=-2.∴原方程组的解为eq\b\lc\{(\a\vs4\al\co1(x=1,,y=-2.))6、解:根据题意,得eq\b\lc\{(\a\vs4\al\co1(x=y+50,,x+y=300+50,))解得eq\b\lc\{(\a\vs4\al\co1(x=200,,y=150.))答:大苹果的重量为200g,小苹果的重量为150g.拓展延伸解:1、解:解关于x,y的二元一次方程组eq\b\lc\{(\a\vs4\al\co1(x+2y=3,,3x+5y=m+2.))得eq\b\lc\{(\a\vs4\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版生物质发电监理服务合同三方协议3篇
- 二零二五版企业安全风险评估与安保服务合同3篇
- 二零二五年度高品质钢结构装配式建筑安装服务合同3篇
- 二零二五版电影投资融资代理合同样本3篇
- 二零二五版初级农产品电商平台入驻合同2篇
- 二零二五年度电商平台安全实验报告安全防护方案合同3篇
- 二零二五年度白酒销售区域保护与竞业禁止合同3篇
- 二零二五版建筑工程专用防水材料招投标合同范本3篇
- 二零二五年研发合作与成果共享合同2篇
- 二零二五版钢结构工程节能合同范本下载3篇
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
评论
0/150
提交评论