2023届山东省聊城市城区数学九年级第一学期期末检测模拟试题含解析_第1页
2023届山东省聊城市城区数学九年级第一学期期末检测模拟试题含解析_第2页
2023届山东省聊城市城区数学九年级第一学期期末检测模拟试题含解析_第3页
2023届山东省聊城市城区数学九年级第一学期期末检测模拟试题含解析_第4页
2023届山东省聊城市城区数学九年级第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,AB=10,sin∠B=,则BC=()A.15 B.6 C.9 D.82.如图,⊙O是△ABC的外接圆,连接OA、OB,∠C=40°,则∠OAB的度数为()A.30° B.40° C.50° D.80°3.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:14.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为()A.B.C.D.5.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是()A. B. C. D.6.抛物线可以由抛物线平移得到,下列平移正确的是()A.先向左平移3个单位长度,然后向上平移1个单位B.先向左平移3个单位长度,然后向下平移1个单位C.先向右平移3个单位长度,然后向上平移1个单位D.先向右平移3个单位长度,然后向下平移1个单位7.已知关于轴对称点为,则点的坐标为()A. B. C. D.8.若反比例函数y=(k≠0)的图象经过(2,3),则k的值为()A.5 B.﹣5 C.6 D.﹣69.下表是一组二次函数的自变量x与函数值y的对应值:

1

1.1

1.2

1.3

1.4

-1

-0.49

0.04

0.59

1.16

那么方程的一个近似根是()A.1 B.1.1 C.1.2 D.1.310.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形 B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴 D.圆的对称中心是它的圆心11.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是()A.60° B.80° C.100° D.120°12.己知是一元二次方程的一个根,则的值为()A.1 B.-1或2 C.-1 D.0二、填空题(每题4分,共24分)13.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBn∁nCn+1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B₃的坐标是_____,点Bn的坐标是_____.14.如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数的图象经过点A、E,且,则________.15.如图,在△ABC中,∠C=90°,BC=6,AC=9,将△ABC平移使其顶点C位于△ABC的重心G处,则平移后所得三角形与原△ABC的重叠部分面积是_____.16.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为__________m.17.正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、C4分别在抛物线y=x2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是________.18.抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为__________.三、解答题(共78分)19.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为.(2)小明和小颖用转盘做游戏,每人转动转盘一次,若两次指针所指数字之和为奇数,则小明胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或者列表法说明理由.20.(8分)如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=1.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设AE=m.(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)(2)写出矩形EFGH的个数及对应的m的取值范围.21.(8分)如图,一次函数与反比例函数的图象交于A(2,1),B(-1,)两点.(1)求m、k、b的值;(2)连接OA、OB,计算三角形OAB的面积;(3)结合图象直接写出不等式的解集.22.(10分)如图,在平面直角坐标系中,的顶点坐标分别为A(2,6),B(0,4),C(3,3).(正方形网格的每个小正方形的边长都是1个单位长度)(1)平移后,点A的对应点A1的坐标为(6,6),画出平移后的;(2)画出绕点C1旋转180°得到的;(3)绕点P(_______)旋转180°可以得到,请连接AP、A2P,并求AP在旋转过程中所扫过的面积.23.(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?24.(10分)佩佩宾馆重新装修后,有间房可供游客居住,经市场调查发现,每间房每天的定价为元,房间会全部住满,当每间房每天的定价每增加元时,就会有一间房空闲,如果游客居住房间,宾馆需对每间房每天支出元的各项费用.设每间房每天的定价增加元,宾馆获利为元.(1)求与的函数关系式(不用写出自变量的取值范围);(2)物价部门规定,春节期间客房定价不能高于平时定价的倍,此时每间房价为多少元时宾馆可获利元?25.(12分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【分析】首先根据正弦函数的定义求得AC的长,然后利用勾股定理求得BC的长.【详解】解:∴直角△ABC中,故选:D.【点睛】本题考查的是锐角三角形的正弦函数,理解熟记正弦三角函数定义是解决本题的关键.2、C【分析】直接利用圆周角定理得出∠AOB的度数,再利用等腰三角形的性质得出答案.【详解】解:∵∠ACB=40°,∴∠AOB=80°,∵AO=BO,∴∠OAB=∠OBA=(180°﹣80°)=50°.故选:C.【点睛】本题主要考查了三角形的外接圆与外心,圆周角定理.正确得出∠AOB的度数是解题关键.3、A【解析】∵两个相似三角形的面积之比为1:4,

∴它们的相似比为1:1,(相似三角形的面积比等于相似比的平方)

∴它们的周长之比为1:1.

故选A.【点睛】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.4、A【分析】先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.【详解】抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.

故选A.5、D【分析】首先过点B作BC垂直OA于C,根据AO=4,△ABO是等辺三角形,得出B点坐标,迸而求出k的值.【详解】解:过点B作BC垂直OA于C,

∵点A的坐标是(2,0)

,AO=4,

∵△ABO是等边三角形∴OC=

2,BC=∴点B的坐标是(2,),把(2,)代入,得:k=xy=故选:D【点睛】本题考查的是利用等边三角形的性质来确定反比例函数的k值.6、B【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【详解】解:抛物线的顶点为(0,0),抛物线的顶点为(-3,-1),抛物线向左平移3个单位长度,然后向下平移1个单位得到抛物线.故选:B.【点睛】本题考查的知识点是二次函数图象平移问题,解答是最简单的方法是确定平移前后抛物线顶点,从而确定平移方向.7、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.8、C【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,依据xy=k即可得出结论.【详解】解:∵反比例函数y=(k≠0)的图象经过(2,3),∴k=2×3=6,故选:C.【点睛】本题主要考查了反比例函数图象上点的坐标特征,熟练掌握是解题的关键.9、C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.10、C【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大11、B【分析】根据圆周角定理即可得到结论.【详解】解:∵∠BOD=160°,∴∠BAD=∠BOD=80°,故选:B.【点睛】本题考查了圆周角定理,理解熟记圆周角定理是解题关键..12、C【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x=2代入方程求解可得m的值.【详解】把x=2代入方程(m﹣2)x2+4x﹣m2=0得到(m﹣2)+4﹣m2=0,解得:m=﹣2或m=2.∵m﹣2≠0,∴m=﹣2.故选:C.【点睛】本题考查了一元二次方程的解的定义,解题的关键是理解一元二次方程解的定义,属于基础题型.二、填空题(每题4分,共24分)13、(4,7)(2n﹣1,2n﹣1)【分析】根据一次函数图象上点的坐标特征找出A1、A2、A3、A4的坐标,结合图形即可得知点Bn是线段CnAn+1的中点,由此即可得出点Bn的坐标.【详解】解:∵直线l:y=x﹣1与x轴交于点A,∴A1(1,0),观察,发现:A1(1,0),A2(2,1),A3(4,3),A4(8,7),…,∴An(2n﹣1,2n﹣1﹣1)(n为正整数).观察图形可知:B1(1,1),B2(2,3),B3(4,7),点Bn是线段CnAn+1的中点,∴点Bn的坐标是(2n﹣1,2n﹣1).故答案为:(4,7),(2n﹣1,2n﹣1)(n为正整数).【点睛】此题主要考查一次函数与几何,解题的关键是发现坐标的变化规律.14、6【分析】设正方形ABOC与正方形EFCD的边长分别为m,n,根据S△AOE=S梯形ACDE+S△AOC-S△ADE,可求出m2=6,然后根据反比例函数比例系数k的几何意义即可求解.【详解】设正方形ABOC与正方形EFCD的边长分别为m,n,则OD=m+n,∵S△AOE=S梯形ACDE+S△AOC-S△ADE,∴,∴m2=6,∵点A在反比例函数的图象上,∴k=m2=6,故答案为:6.【点睛】本题考查了正方形的性质,割补法求图形的面积,反比例函数比例系数k的几何意义,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数.15、3【详解】由三角形的重心是三角形三边中线的交点,根据中心的性质可得,G是将AB边上的中线分成2:1两个部分,所以重合部分的三角形与原三角形的相似比是1:3,所以重合部分的三角形面积与原三角形的面积比是1:9,因为原三角形的面积是所以27,所以重合部分三角形面积是3,故答案为:3.16、25m【分析】根据垂径定理可得△BOD为直角三角形,且BD=AB,之后利用勾股定理进一步求解即可.【详解】∵点C是的中点,∴OC平分AB,∴∠BOD=90°,BD=AB=20m,设OB=x,则:OD=(x-10)m,∴,解得:,∴OB=25m,故答案为:25m.【点睛】本题主要考查了垂径定理与勾股定理的综合运用,熟练掌握相关概念是解题关键.17、2+.【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论.【详解】∵点(0,1),四边形,,均是正方形,点、、和点、、、分别在抛物线和y轴上,∴(1,1),(0,2),∴(,2),∴(0,2+),∵点的纵坐标与点相同,点在二次函数的图象上,∴(,),即,∴.故答案为:2+.【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键.18、1【分析】易得顶点(2,-6),根据待定系数法,求出一次函数解析式,进而求出直线与坐标轴的交点,根据三角形的面积公式,即可求解.【详解】∵抛物线,∴顶点(2,-6),∵一次函数的图象经过点,∴,解得:k=,∴一次函数解析式为:,∴直线与坐标轴的交点坐标分别是:(0,3),(,0),∴一次函数图象与两坐标轴所围成的三角形面积=.故答案是:1.【点睛】本题主要考查二次函数和一次函数图象与平面几何的综合,掌握一次函数图象与坐标轴的交点坐标的求法,是解题的关键.三、解答题(共78分)19、(1);(2)不公平,理由见解析【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况,得出这两个数字之和是奇数与偶数的情况,再根据概率公式即可得出答案.【详解】解:(1)∵在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)不公平,理由如下:列表如下:121121421451456由表可知,所有等可能的情况数为9种,其中两次指针所指数字之和为奇数的有4种结果,和为偶数的有5种结果,所以小明获胜的概率为,小颖获胜的概率为,由≠知此游戏不公平.【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键.20、(1)见解析;(2)①当m=0时,存在1个矩形EFGH;②当0<m<时,存在2个矩形EFGH;③当m=时,存在1个矩形EFGH;④当<m≤时,存在2个矩形EFGH;⑤当<m<5时,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【分析】(1)以O点为圆心,OE长为半径画圆,与菱形产生交点,顺次连接圆O与菱形每条边的同侧交点即可;(2)分别考虑以O为圆心,OE为半径的圆与每条边的线段有几个交点时的情形,共分五种情况.【详解】(1)如图①,如图②(也可以用图①的方法,取⊙O与边BC、CD、AD的另一个交点即可)

(2)∵O到菱形边的距离为,当⊙O与AB相切时AE=,当过点A,C时,⊙O与AB交于A,E两点,此时AE=×2=,根据图像可得如下六种情形:①当m=0时,如图,存在1个矩形EFGH;②当0<m<时,如图,存在2个矩形EFGH;③当m=时,如图,存在1个矩形EFGH;④当<m≤时,如图,存在2个矩形EFGH;⑤当<m<5时,如图,存在1个矩形EFGH;⑥当m=5时,不存在矩形EFGH.【点睛】本题考查了尺规作图,菱形的性质,以及圆与直线的关系,将能作出的矩形个数转化为圆O与菱形的边的交点个数,综合性较强.21、(1)m=1,k=1,b=-1;(1);(3)-1<x<0或x>1.【解析】试题分析:(1)先由反比例函数上的点A(1,1)求出m,再由点B(﹣1,n)求出n,则由直线经过点A、B,得二元一次方程组,求得m、k、b;(1)△AOB的面积=△BOC的面积+△AOC的面积;(3)由图象直接写出不等式的解集.试题解析:(1)由题意得:,m=1,当x=-1时,,∴B(-1,-1),∴,解得,综上可得,m=1,k=1,b=-1;(1)如图,设一次函数与y轴交于C点,当x=0时,y=-1,∴C(0,-1),∴;(3)由图可知,-1<x<0或x>1.考点:反比例函数与一次函数的交点问题.22、(1)图见解析;(2)图见解析;(3),AP所扫过的面积为.【分析】(1)先根据点A和的坐标得出平移方式,再根据点坐标的平移变换规律得出点的坐标,然后顺次连接点即可得;(2)先根据旋转的性质得出点的坐标,再顺次连接点即可得;(3)求出的中点坐标即为点P的坐标,再利用两点之间的距离公式可得AP的值,然后利用圆的面积公式即可得扫过的面积.【详解】(1)平移后得到点,的平移方式是向右平移个单位长度,,,即,如图,先在平面直角坐标系中,描出点,再顺次连接即可得到;(2)设点的坐标为,由题意得:点是的中点,则,解得,即,同理可得:,如图,先在平面直角坐标系中,描出点,再顺次连接点即可得到;(3)设点P的坐标为,由题意得:点P是的中点,则,即,,绕点旋转得到,所扫过的图形是以点P为圆心、AP长为半径的半圆,所扫过的面积为.【点睛】本题考查了图形的平移与旋转、点坐标的平移变换规律、圆的面积公式等知识点,熟练掌握点坐标的变换规律是解题关键.23、(1)y=﹣20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒.【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.试题解析:(1)由题意得,==;(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.考点:二次函数的应用.24、(1);(2)每间房价为元时,宾馆可获利元【分析】(1)根据题意表示出每间房间的利润和房间数,进而求得答案;(2)代入(1)求出的函数式,解方程即可,注意要符合条件的.【详解】解:由题意得答:与的函数关系式为:由可得:令,即解得解得此时每间房价为:(元)答:每间房价为元时,宾馆可获利元。【点睛】本题考查的是盈利问题的二次函数式及二次函数的最值问题,通常做法是先列出二次函数式,然后利用y最值或化成顶点式进行求解.用代数表示每间房间的利润和房间数是关键.25、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论