版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,,斜边为,那么2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为,所以方法三:,,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长,,满足,那么这个三角形是直角三角形,其中为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;②定理中,,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,,满足,那么以,,为三边的三角形是直角三角形,但是为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,,,为正整数时,称,,为一组勾股数②记住常见的勾股数可以提高解题速度,如;;;等③用含字母的代数式表示组勾股数:丢番图发现的:式子的正整数)毕达哥拉斯发现的:(的整数)柏拉图发现的:(的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.题型一:直接考查勾股定理例1.在中,.⑴已知,.求的长⑵已知,,求的长题型二:应用勾股定理建立方程例2.⑴在中,,,,于,=⑵已知直角三角形的两直角边长之比为,斜边长为,则这个三角形的面积为⑶已知直角三角形的周长为,斜边长为,则这个三角形的面积为例3.如图中,,,,,求的长例4.如图,,分别以各边为直径作半圆,求阴影部分面积题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高,另一棵高,两树相距,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了。题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为,,,判定是否为直角三角形①,,②,,例7.三边长为,,满足,,的三角形是什么形状?题型五:勾股定理与勾股定理的逆定理综合应用例8.已知中,,,边上的中线,求证:。1、在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?2、为美化环境,计划在某小区内用30平方米的草皮铺设一边长为10米的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。3、如图,铁路上A、B两站(视为直线上两点)相距25千米,C、D为两个村庄(视为两个点),DA⊥AB于A,CB⊥AB于B,DA=15千米,CB=10千米,现要在铁路上建设一个土特产收购站E,使得C、D两村到E的的距离相等,则E应建在距A多少千米处?4、在河L的同侧有两个仓库A、B相距1640米,其中A距河210米,B距河570米,现要在河岸上建一个货运码头,使得两仓库到码头的路程和最短,问:这个最短路程是多少?码头应建在何处?5、有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺。如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面。这个水池的深度与这根芦苇的长度分别为多少?典型题训练勾股定理在Rt△ABC中,AC=12,AB=20,求BC的长。△ABC中,若AC=15,BC=13,AB边上的高CD=12,求△ABC的周长。勾股定理的逆定理已知,在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,,求∠C的度数。2.如图,A,B是公路l(l为东西走向)两旁的两个小村庄,A村到公路l的距离AC=1km,B村到公路l的距离BD=2km,B村在A村的南偏东45°方向上.
(1)求出A,B两村之间的距离;
(2)为方便村民出行,计划在公路边新建一个公共汽车站P,要求该站到两村的距离相等,请用尺规在图中作出点P的位置(保留清晰的作图痕迹)。一艘在海上朝正北方向航行的轮船,在航行240海里时方向仪坏了,凭经验,船长指挥船左转90º,继续航行70海里,则距出发地250海里,你判断船转弯后是否沿正西方向航行?三.最短路径问题1.如图所示是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?有一圆柱形油罐,如图所示,要从A点环绕油罐建梯子,正好到A点的正上方B点,若油罐底面半径是4m,高是7m,π≈3,问梯子最短是多少米?折叠问题如图,矩形纸片ABCD中,AB=8cm,把矩形纸片沿直线AC折叠点B落在点E处,AE交DC于点F,若AF=6.25cm,求AD的长。如图,折叠长方形的一边AD,使点D落在BC边的点F处,BC=10cm,AB=8cm,求EC的长。3.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长。如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点A′,且B′C=3,求CN和AM的长。网格问题如图,正方形网格中的每个小正方形的边长为1,△ABC的三个顶点在格点上,求△ABC中AB边上的高。面积问题1.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为6和8,求b的面积。2.如图所示,在△ABC中,AC=10,BC=17,CD=8,AD=6,(1)求BD的长;(2)求△ABC的面积。如图,在△ABC中,∠ABC=90º,分别以BC,AB,AC为边向外作正方形,面积分别记为S1、S2、S3,若S2=4,S3=6,则S1=。4.如图,在Rt△ABC中,∠C=90º,BC=6cm
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业叉车租赁合同范例
- 中介独家房源合同范例
- 天津渤海职业技术学院《C语言》2023-2024学年第一学期期末试卷
- 知名饭堂承包方案
- 独立车位买卖合同范例
- 城市帐篷出租合同范例
- 奠基活动策划合同范例
- 土建类安全员(C2)试题(含答案)
- 七年级地理上册 1.4 地形图的判读教学实录 新人教版
- 民房房屋共建合同范例
- 2025届新高考语文必背74篇古诗词译文(解析版)
- 《中国脓毒血症指南》课件
- 4.3.1海气相互作用课件高中地理湘教版(2019)选择性必修1
- 2023年天津南开区教育系统招聘笔试真题
- 2024年全国各地化学中考试题汇编:化学计算题(含详解)
- 问题解决策略:归纳课件2024-2025学年北师大版数学七年级上册
- 风电场建设施工合同规定
- 年终总结安全类
- 城市照明特许经营权临时接管制度研究
- 2024-2030年中国水果行业盈利态势及营销动态分析研究报告
- 外研版(三起)(2024)小学三年级上册英语全册教案
评论
0/150
提交评论