2023届内蒙古自治区满洲里市九年级数学第一学期期末检测试题含解析_第1页
2023届内蒙古自治区满洲里市九年级数学第一学期期末检测试题含解析_第2页
2023届内蒙古自治区满洲里市九年级数学第一学期期末检测试题含解析_第3页
2023届内蒙古自治区满洲里市九年级数学第一学期期末检测试题含解析_第4页
2023届内蒙古自治区满洲里市九年级数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在同一平面直角坐标系中,反比例函数y(b≠0)与二次函数y=ax2+bx(a≠0)的图象大致是()A. B.C. D.2.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.3.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE4.将二次函数化成顶点式,变形正确的是:()A. B. C. D.5.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A. B. C. D.6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A. B. C. D.7.三角形在正方形网格纸中的位置如图所示,则的值是()A. B. C. D.8.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°9.若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A. B. C. D.10.将一副三角尺(在中,,,在中,,)如图摆放,点为的中点,交于点,经过点,将绕点顺时针方向旋转(),交于点,交于点,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)12.如图,为的弦,的半径为5,于点,交于点,且,则弦的长是_____.13.圆内接正六边形的边长为6,则该正六边形的边心距为_____.14.如图,在半径为2的⊙O中,弦AB⊥直径CD,垂足为E,∠ACD=30°,点P为⊙O上一动点,CF⊥AP于点F.①弦AB的长度为_____;②点P在⊙O上运动的过程中,线段OF长度的最小值为_____.15.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.16.如图,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.17.方程和方程同解,________.18.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为_____.三、解答题(共66分)19.(10分)某中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学代表学校参加全市汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(6分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为____.21.(6分)作出函数y=2x2的图象,并根据图象回答下列问题:(1)列表:x……y……(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是(直接写出结论).22.(8分)如图,在梯形ABCD中,AD//BC,AC与BD相交于点O,点E在线段OB上,AE的延长线与BC相交于点F,OD2=OB·OE.(1)求证:四边形AFCD是平行四边形;(2)如果BC=BD,AE·AF=AD·BF,求证:△ABE∽△ACD.23.(8分)图1和图2中的正方形ABCD和四边形AEFG都是正方形.(1)如图1,连接DE,BG,M为线段BG的中点,连接AM,探究AM与DE的数量关系和位置关系,并证明你的结论;(2)在图1的基础上,将正方形AEFG绕点A逆时针方向旋转到图2的位置,连结DE、BG,M为线段BG的中点,连结AM,探究AM与DE的数量关系和位置关系,并证明你的结论.24.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有______人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在______组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?25.(10分)如图,梯形ABCD中,,点在上,连与的延长线交于点G.(1)求证:;(2)当点F是BC的中点时,过F作交于点,若,求的长.26.(10分)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若∠AFB=2,求的值.(3)若点G在线段BF上,且GF=2BG,连接AG,CG,设=x,四边形AGCE的面积为,ABG的面积为,求的最大值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接利用二次函数图象经过的象限得出a,b的值取值范围,进而利用反比例函数的性质得出答案.【详解】A、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的右侧,则a,b异号,即b<1.所以反比例函数y的图象位于第二、四象限,故本选项错误;B、抛物线y=ax2+bx开口方向向上,则a>1,对称轴位于轴的左侧,则a,b同号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;C、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项错误;D、抛物线y=ax2+bx开口方向向下,则a<1,对称轴位于轴的右侧,则a,b异号,即b>1.所以反比例函数y的图象位于第一、三象限,故本选项正确;故选D.【点睛】本题考查了反比例函数的图象以及二次函数的图象,要熟练掌握二次函数,反比例函数中系数与图象位置之间关系.2、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.3、D【解析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,AE=BE,而点D不一定是OE的中点,故D错误.【详解】∵OD⊥AB,∴由垂径定理知,点D是AB的中点,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=12∠AOB,由圆周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.4、A【分析】将化为顶点式,再进行判断即可.【详解】故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程的顶点式表示形式是解题的关键.5、B【解析】设AB=x,求出BC=x,CD=AC=x,求出BD为(x+x),通过∠ACB=45°,CD=AC,可以知道∠D即为22.5°,再解直角三角形求出tanD即可.【详解】解:设AB=x,

∵在Rt△ABC中,∠B=90°,∠ACB=45°,

∴∠BAC=∠ACB=45°,

∴AB=BC=x,

由勾股定理得:AC==x,∴AC=CD=x∴BD=BC+CD=x+x,

∴tan22.5°=tanD==故选B.【点睛】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,设出AB=x能求出BD=x+x是解此题的关键.6、B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+2=13(个),故选B.【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力.掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.7、A【分析】根据图形找到对边和斜边即可解题.【详解】解:由网格纸可知,故选A.【点睛】本题考查了三角函数的实际应用,属于简单题,熟悉三角函数的概念是解题关键.8、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.9、B【解析】试题分析:∵函数y=x2的图象的顶点坐标为,将函数y=x2的图象向右平移2个单位,再向上平移3个单位,∴其顶点也向右平移2个单位,再向上平移3个单位.根据根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加.∴平移后,新图象的顶点坐标是.∴所得抛物线的表达式为.故选B.考点:二次函数图象与平移变换.10、C【解析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【详解】∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.二、填空题(每小题3分,共24分)11、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.12、1【分析】连接AO,得到直角三角形,再求出OD的长,就可以利用勾股定理求解.【详解】连接,∵半径是5,,∴,根据勾股定理,,∴,因此弦的长是1.【点睛】解答此题不仅要用到垂径定理,还要作出辅助线AO,这是解题的关键.13、3【分析】根据题意画出图形,利用等边三角形的性质及锐角三角函数的定义直接计算即可.【详解】如图所示,连接OB、OC,过O作OG⊥BC于G.∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴边心距OG=OB•sin∠OBG=6(cm).故答案为:.【点睛】本题考查了正多边形与圆、锐角三角函数的定义及特殊角的三角函数值,熟知正六边形的性质是解答本题的关键.14、2.-1【分析】①在Rt△AOE中,解直角三角形求出AE即可解决问题.②取AC的中点H,连接OH,OF,HF,求出OH,FH,根据OF≥FH-OH,即,由此即可解决问题.【详解】解:①如图,连接OA.∵OA=OC=2,∴∠OCA=∠OAC=30°,∴∠AOE=∠OAC+∠ACO=60°,∴AE=OA•sin60°=,∵OE⊥AB,∴AE=EB=,∴AB=2AE=2,故答案为2.②取AC的中点H,连接OH,OF,HF,∵OA=OC,AH=HC,∴OH⊥AC,∴∠AHO=90°,∵∠COH=30°,∴OH=OC=1,HC=,AC=2,∵CF⊥AP,∴∠AFC=90°,∴HF=AC=,∴OF≥FH﹣OH,即OF≤﹣1,∴OF的最小值为﹣1.故答案为﹣1.【点睛】本题考查轨迹,圆周角定理,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.15、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.16、1【分析】由旋转的性质可得AC=AC1=3,∠CAC1=60°,由勾股定理可求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===1,故答案为:1.【点睛】本题考查了旋转的性质,勾股定理,熟练旋转的性质是本题的关键.17、【解析】分别求解两个方程的根即可.【详解】解:,解得x=3或m;,解得x=3或-1,则m=-1,故答案为:-1.【点睛】本题考查了运用因式分解法解一元二次方程.18、1:1.【解析】试题分析:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:1.考点:相似三角形的性质.三、解答题(共66分)19、(1)见解析;(2)【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【详解】(1)画树状图得:(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20、或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=7-x,又折叠图形可得AD=AD′=5,∴x2+(7-x)2=25,解得x=3或1,即MD′=3或1.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7-3=1,D′N=5-3=2,EN=1-a,∴a2=22+(1-a)2,解得a=,即DE=,②当MD′=1时,AM=7-1=3,D′N=5-1=1,EN=3-a,∴a2=12+(3-a)2,解得a=,即DE=.故答案为:或.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.21、(1)见解析;(2)见解析;(3)【分析】(1)根据函数的解析式,取x,y的值,即可.(2)描点、连线,画出的函数图象即可;(3)结合函数图象即可求解.【详解】(1)列表:x…﹣2﹣1012…y…82028…(2)画出函数y=2x2的图象如图:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是,故答案为:.22、(1)证明见解析;(2)证明见解析【分析】(1)由题意,得到,然后由AD∥BC,得到,则,即可得到AF//CD,即可得到结论;(2)先证明∠AED=∠BCD,得到∠AEB=∠ADC,然后证明得到,即可得到△ABE∽△ADC.【详解】证明:(1)∵OD2=OE·OB,∴.∵AD//BC,∴.∴.∴AF//CD.∴四边形AFCD是平行四边形.(2)∵AF//CD,∴∠AED=∠BDC,.∵BC=BD,∴BE=BF,∠BDC=∠BCD∴∠AED=∠BCD.∵∠AEB=180°∠AED,∠ADC=180°∠BCD,∴∠AEB=∠ADC.∵AE·AF=AD·BF,∴.∵四边形AFCD是平行四边形,∴AF=CD.∴.∴△ABE∽△ADC.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例,平行四边形的判定和性质,以及平行线的性质,解题的关键是熟练掌握相似三角形的判定方法,正确找到证明三角形相似的条件.23、(1)AM=DE,AM⊥DE,理由详见解析;(2)AM=DE,AM⊥DE,理由详见解析.【解析】试题分析:(1)AM=DE,AM⊥DE,理由是:先证明△DAE≌△BAG,得DE=BG,∠AED=∠AGB,再根据直角三角形斜边的中线的性质得AM=BG,AM=BM,则AM=DE,由角的关系得∠MAB+∠AED=90°,所以∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:作辅助线构建全等三角形,证明△MNG≌△MAB和△AGN≌△EAD可以得出结论.试题解析:(1)AM=DE,AM⊥DE,理由是:如图1,设AM交DE于点O,∵四边形ABCD和四边形AEFG都是正方形,∴AG=AE,AD=AB,∵∠DAE=∠BAG,∴△DAE≌△BAG,∴DE=BG,∠AED=∠AGB,在Rt△ABG中,∵M为线段BG的中点,∴AM=BG,AM=BM,∴AM=DE,∵AM=BM,∴∠MBA=∠MAB,∵∠AGB+∠MBA=90°,∴∠MAB+∠AED=90°,∴∠AOE=90°,即AM⊥DE;(2)AM=DE,AM⊥DE,理由是:如图2,延长AM到N,使MN=AM,连接NG,∵MN=AM,MG=BM,∠NMG=∠BMA,∴△MNG≌△MAB,∴NG=AB,∠N=∠BAN,由(1)得:AB=AD,∴NG=AD,∵∠BAN+∠DAN=90°,∴∠N+∠DAN=90°,∴NG⊥AD,∴∠AGN+∠DAG=90°,∵∠DAG+∠DAE=∠EAG=90°,∴∠AGN=∠DAE,∵NG=AD,AG=AE,∴△AGN≌△EAD,∴AN=DE,∠N=∠ADE,∵∠N+∠DAN=90°,∴∠ADE+∠DAN=90°,∴AM⊥DE.考点:旋转的性质;正方形的性质.24、(1)400,图详见解析;(2)B;(3)660人.【分析】(1)用E组的人数除以E组所占的百分比即可得出学生总人数;根据总人数乘以B组所占百分比可得B组的人数,利用A、C各组的人数除以总人数即得A、C两组所占百分比,进而可补全两幅统计图;(2)根据中位数的定义判断即可;(3)利用总人数乘以A、B两组的百分比之和求解即可.【详解】解:(1)40÷10%=400,∴抽取的学生共有400人;B组人数为:400×30%=120,A组占:100÷400=25%,C组占:80÷

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论