版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列运算正确的是()A.a•a1=a B.(2a)3=6a3 C.a6÷a2=a3 D.2a2﹣a2=a22.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能确定3.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n4.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定5.如图,△ABC在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC的面积为10,且sinA=,那么点C的位置可以在()A.点C1处 B.点C2处 C.点C3处 D.点C4处6.某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.任意画一个三角形,其内角和是360°D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球7.如图,⊙O是正△ABC的外接圆,点D是弧AC上一点,则∠BDC的度数().A.50° B.60° C.100° D.120°8.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE∶EB=4∶1,EF⊥AC于点F,连接FB,则tan∠CFB的值等于()A. B. C. D.59.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为().A.; B.; C.; D..10.已知关于x的一元二次方程有两个相等的实根,则k的值为()A. B. C.2或3 D.或二、填空题(每小题3分,共24分)11.计算:____________12.点与关于原点对称,则__________.13.如图,在山坡上种树时,要求株距(相邻两树间的水平距离)为6m.测得斜坡的斜面坡度为i=1:(斜面坡度指坡面的铅直高度与水平宽度的比),则斜坡相邻两树间的坡面距离为_____.14.已知m,n是一元二次方程的两根,则________.15.在中,,,,则的长是__________.16.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.17.因式分解:_______________________.18.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.三、解答题(共66分)19.(10分)如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.20.(6分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计(1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月(按天计算)的营业额,星期一到星期五营业额相差不大,用这天的平均数估算合适么?简要说明理由.21.(6分)如图,在中,,于点,于点.(1)求证:;(2)若,求四边形的面积.22.(8分)如图,在菱形中,点在对角线上,延长交于点.(1)求证:;(2)已知点在边上,请以为边,用尺规作一个与相似,并使得点在上.(只须作出一个,保留作图痕迹,不写作法)23.(8分)某校为了弘扬中华传统文化,了解学生整体阅读能力,组织全校的1000名学生进行一次阅读理解大赛.从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<700.2870≤x<80160.3280≤x<90100.2090≤x≤10040.08(1)频数分布表中的;(2)将上面的频数分布直方图补充完整;(3)如果成绩达到90及90分以上者为优秀,可推荐参加决赛,估计该校进入决赛的学生大约有人.24.(8分)如图,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速铁路(即线段AC),经测量,森林保护区的中心P在城市A的北偏东60°方向上,在线段AC上距A城市150km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,120km为半径的圆形区域,请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.732)25.(10分)镇江某特产专卖店销售某种特产,其进价为每千克40元,若按每千克60元出售,则平均每天可售出100千克,后来经过市场调查发现,单价每降低1元,平均每天的销售量增加10千克,若专卖店销售这种特产想要平均每天获利2240元,且销量尽可能大,则每千克特产应定价多少元?26.(10分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据同底数幂的乘法法则,积的乘方运算法则,同底数幂的除法法则以及合并同类项法则逐一判断即可.【详解】A.a•a1=a2,故本选项不合题意;B.(2a)3=8a3,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.2a2﹣a2=a2,正确,故本选项符合题意.故选:D.【点睛】本题考查的是幂的运算,比较简单,需要牢记幂的运算公式.2、B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得
Rt△ABC∽Rt△A′B′C′,
∠A=∠A′,sinA=sinA′
故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.3、D【解析】根据反比例函数的性质,可得答案.【详解】∵y=−的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.4、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.5、D【解析】如图:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案为D.6、D【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【详解】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、任意画一个三角形,其内角和是360°的概率为:0,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.【点睛】本题考查频率估算概率,关键在于通过图象得出有利信息.7、B【分析】根据等边三角形的性质和圆周角定理的推论解答即可.【详解】解:∵△ABC是正三角形,∴∠A=60°,∴∠BDC=∠A=60°.故选:B.【点睛】本题考查了等边三角形的性质和圆周角定理的推论,属于基础题型,熟练掌握上述基本知识是解题的关键.8、C【解析】根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴=∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==故选C.9、B【分析】根据余弦函数是邻边比斜边,可得答案.【详解】解:由题意,得,,故选:.【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.10、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论.【详解】∵方程有两个相等的实根,∴△=k2-4×2×3=k2-24=0,解得:k=.故选A.【点睛】本题考查了根的判别式,熟练掌握“当△=0时,方程有两个相等的两个实数根”是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据分式混合运算的法则计算即可.【详解】解:原式====1,故答案为:1.【点睛】本题考查了分式混合运算,主要考查学生的计算能力,掌握分式混合运算的法则是解题的关键.12、【分析】直接利用关于原点对称点的性质分析得出答案.【详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.13、4米.【分析】首先根据斜面坡度为i=1:求出株距(相邻两树间的水平距离)为6m时的铅直高度,再利用勾股定理计算出斜坡相邻两树间的坡面距离.【详解】由题意水平距离为6米,铅垂高度2米,∴斜坡上相邻两树间的坡面距离=(m),故答案为:4米.【点睛】此题考查解直角三角形的应用,解题关键是掌握计算法则.14、-1【分析】根据根与系数的关系求出m+n与mn的值,然后代入计算即可.【详解】∵m,n是一元二次方程的两根,∴m+n=2,mn=-3,∴2-3=-1.故答案为:-1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.15、1【分析】根据∠A的余弦值列出比例式即可求出AC的长.【详解】解:在Rt△ABC中,,∴AC=故答案为1.【点睛】此题考查是已知一个角的余弦值,求直角三角形的边长,掌握余弦的定义是解决此题的关键.16、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,
∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,
在Rt△OAD中,OA=50,OD=50-x,AD=40,
∵OD2+AD2=OA2,
∴(50-x)2+402=502,解得x=1,
即水深CD约为为1.
故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.17、【分析】先提公因式,再用平方差公式分解.【详解】解:【点睛】本题考查因式分解,掌握因式分解方法是关键.18、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为.【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.三、解答题(共66分)19、(1)y2=;(2)x>2;(3)点A与两坐标轴围成的矩形OBAC的面积是1.【解析】(1)将点A的坐标代入一次函数的解析式,求得a值后代入反比例函数求得b的值后即可确定反比例函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.(3)根据反比例函数k值的几何意义即可求解.【详解】解:(1)将A(a,3)代入一次函数y1=x+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数得,解得k=1,∴(2)∵A(2,3),y1=x+1,∴在y轴的右侧,当y1>y2时,x的取值范围是x>2;(3)∵k=1,∴点A与两坐标轴围成的矩形OBAC的面积是1.【点睛】本题考查了反比例函数与一次函数的交点问题,能正确的确定点A的坐标是解答本题的关键,难度不大.20、(1)780,680,640;(2)不合适,理由见解析【分析】(1)根据平均数、中位数、众数的定义,即可得解;(2)根据数值和平均数之间的差距即可判定.【详解】(1)这组数据的平均数是元,从小到大排列为:540、640、640、680、780、1070、1110,则其中位数是680元,众数是640元.(2)不合适理由:星期一到星期五的日平均营业额相差不大,但是与周六和周日差距较大,平均数受极端值影响较大,所以不合适.【点睛】此题主要考查统计的相关概念,数据波动以及离散程度的相关知识,熟练掌握,即可解题.21、(1)见解析;(2)【分析】(1)连接OC,先根据得出∠AOC=∠BOC,利用角平分线的性质即可得出结论;(2)在直角三角形中利用的特性结合勾股定理,利用面积公式即可求得的面积,同理可求得的面积,继而求得答案.【详解】(1)连接,∵,∴,∵,∴;(2)∵,∴,∵,∴,∵,∴,∴,∴,同理可得,∴.【点睛】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.22、(1)详见解析;(2)详见解析;【分析】(1)根据菱形的性质可得:,再根据相似三角形的判定即可证出,从而得出结论;(2)根据菱形的性质,可得DA=DC,从而得出∠DAC=∠DCA,可得只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,然后用尺规作图作∠CPQ=∠AEF或∠CPQ=∠AFE即可.【详解】解:(1)∵四边形是菱形,∴.∴.∴.(2)∵四边形是菱形∴DA=DC∴∠DAC=∠DCA∴只需做∠CPQ=∠AEF或∠CPQ=∠AFE,即可得出与相似,尺规作图如图所示:①作∠CPQ=∠AEF,步骤为:以点E为圆心,以任意长度为半径,作弧,交EA和EF于点G、H,以P为圆心,以相同长度为半径作弧,交CP于点M,以M为圆心,以GH的长为半径作弧,两弧交于点N,连接PN并延长,交AC于Q,就是所求作的三角形;②作∠CPQ=∠AFE,作法同上;或∴就是所求作的三角形(两种情况任选其一即可).【点睛】此题考查的是菱形的性质、相似三角形的判定及性质和尺规作图,掌握菱形的性质、相似三角形的判定定理及性质定理和用尺规作图作角等于已知角是解决此题的关键.23、(1)14;(2)补图见解析;(3)1.【解析】(1)根据第1组频数及其频率求得总人数,总人数乘以第2组频率可得a的值;(2)把上面的频数分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度跨境物流运输与保险合同
- 2024年艺术品拍卖项目申请报告
- 2024年度版权许可使用协议书(影视作品)
- 2024版演艺经纪合同标的为艺人经纪代理
- 农业科学与农村文化创新演出考核试卷
- 木材的纤维结构与力学性质考核试卷
- 固体饮料行业产品创新案例研究考核试卷
- 2024年度农村小微企业扶持合同
- 托儿所服务的夏令营与寒假活动考核试卷
- 2024版股权转让及回购合同
- 垫片冲压模具设计毕业设计论文
- 常见矩形管规格表
- 高中学生社区服务活动记录表
- Python-Django开发实战
- 小学道法小学道法1我们的好朋友--第一课时ppt课件
- 配电箱安装规范
- 中英文商务派遣函样板
- 幼儿园大班主题教案《超市》含反思
- 弯臂车床夹具设计说明书
- 企业员工健康管理存在的问题与解决途径探讨
- 浅谈初中数学教学新课标理念的运用
评论
0/150
提交评论