版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有()A.1个 B.2个 C.3个 D.4个2.若a是方程的一个解,则的值为A.3 B. C.9 D.3.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断4.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>25.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.6.如图,已知∥∥,,那么的值是()A. B. C. D.27.如图,四边形中,,,,设的长为,四边形的面积为,则与之间的函数关系式是()A. B. C. D.8.如图,⊙O的半径为6,点A、B、C在⊙O上,且∠BCA=45°,则点O到弦AB的距离为()A.3 B.6 C.3 D.69.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.10.在RtABC中,∠C=90°,如果,那么的值是()A.90° B.60° C.45° D.30°11.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,若BO=6cm,OC=8cm则BE+CG的长等于()A.13 B.12 C.11 D.1012.一组数据:2,3,6,4,3,5,这组数据的中位数、众数分别是()A.3,3 B.3,4 C.3.5,3 D.5,3二、填空题(每题4分,共24分)13.数学学习应经历“观察、实验、猜想、证明”等过程.下表是几位数学家“抛掷硬币”的实验数据:实验者棣莫弗蒲丰德·摩根费勒皮尔逊罗曼诺夫斯基掷币次数204840406140100003600080640出现“正面朝上”的次数10612048310949791803139699频率0.5180.5070.5060.4980.5010.492请根据以上实验数据,估计硬币出现“正面朝上”的概率为__________.(精确到0.1)14.抛物线的顶点坐标是____________15.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为_____度.16.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=﹣和y=的图象上,则k的值为___.17.如图所示,一个质地均匀的小正方体有六个面,小明要给这六个面分别涂上红色、黄色和蓝色三种颜色.在桌面上掷这个小正方体,要使事件“红色朝上”的概率为,那么需要把__________个面涂为红色.18.直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x+b<的解集是_______.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.(1)求直线AC解析式;(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.20.(8分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.21.(8分)综合与探究如图,在平面直角坐标系中,点的坐标分别为,点在轴上,其坐标为,抛物线经过点为第三象限内抛物线上一动点.求该抛物线的解析式.连接,过点作轴交于点,当的周长最大时,求点的坐标和周长的最大值.若点为轴上一动点,点为平面直角坐标系内一点.当点构成菱形时,请直接写出点的坐标.22.(10分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.23.(10分)如图,在中,,,垂足分别为,与相交于点.(1)求证:;(2)当时,求的长.24.(10分)如图,已知点是外一点,直线与相切于点,直线分别交于点、,,交于点.(1)求证:;(2)当的半径为,时,求的长.25.(12分)如图,这是一个小正方体所搭几何体的俯视图,正方形中的数字表示在该位置小正方体的个数.请你画出它的主视图和左视图.26.在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC于E、F.求证:四边形AECF是菱形.
参考答案一、选择题(每题4分,共48分)1、C【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a>0,
与y轴的交点为在y轴的负半轴上可推出c=-1<0,
对称轴为,a>0,得b<0,
故abc>0,故①正确;
由对称轴为直线,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,
所以当x=-1时,y>0,
所以a-b+c>0,故②正确;
抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,
故ax2+bx+c+1=0有两个不相等的实数根,故③错误;
由对称轴为直线,由图象可知,所以-4a<b<-2a,故④正确.
所以正确的有3个,故选:C.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.2、C【解析】由题意得:2a2-a-3=0,所以2a2-a=3,所以6a2-3a=3(2a2-a)=3×3=9,故选C.3、B【解析】比较OP与半径的大小即可判断.【详解】,,,点P在外,故选B.【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.4、B【解析】本题主要考查分式有意义的条件:分母不能为1.【详解】解:∵x﹣2≠1,∴x≠2,故选B.【点睛】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.5、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.6、A【分析】根据平行线分线段成比例定理得到AC:CE=BD:DF=1:2,然后利用比例性质即可得出答案进行选择.【详解】解:∵AB∥CD∥EF,∴AC:CE=BD:DF,∵,∴AC:CE=BD:DF=1:2,即CE=2AC,∴AC:AE=1:3=.故选A.【点睛】本题考查平行线分线段成比例即三条平行线截两条直线,所得的对应线段成比例.7、C【分析】四边形ABCD图形不规则,根据已知条件,将△ABC绕A点逆时针旋转90°到△ADE的位置,求四边形ABCD的面积问题转化为求梯形ACDE的面积问题;根据全等三角形线段之间的关系,结合勾股定理,把梯形上底DE,下底AC,高DF分别用含x的式子表示,可表示四边形ABCD的面积.【详解】作AE⊥AC,DE⊥AE,两线交于E点,作DF⊥AC垂足为F点,∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,设BC=a,则DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四边形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故选C.【点睛】本题运用了旋转法,将求不规则四边形面积问题转化为求梯形的面积,充分运用了全等三角形,勾股定理在解题中的作用.8、C【分析】连接OA、OB,作OD⊥AB于点D,则△OAB是等腰直角三角形,得到ODAB,即可得出结论.【详解】连接OA、OB,作OD⊥AB于点D.∵△OAB中,OB=OA=6,∠AOB=2∠ACB=90°,∴AB.又∵OD⊥AB于点D,∴ODAB=.故选C.【点睛】本题考查了圆周角定理,得到△OAB是等腰直角三角形是解答本题的关键.9、D【解析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【点睛】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.10、C【分析】根据锐角三角函数的定义解得即可.【详解】解:由已知,,∵∴∵∠C=90°∴=45°故选:C【点睛】本题考查了锐角三角函数的定义,解答关键是根据定义和已知条件构造等式求解.11、D【解析】根据切线长定理得:BE=BF,CF=CG,∠OBF=∠OBE,∠OCF=∠OCG;∵AB∥CD,∴∠ABC+∠BCD=180°,∴∠OBF+∠OCF=90°,∴∠BOC=90°,∵OB=6cm,OC=8cm,∴BC=10cm,∴BE+CG=BC=10cm,故选D.【点睛】本题主要考查了切线长定理,涉及到平行线的性质、勾股定理等,求得BC的长是解题的关键.12、C【分析】把这组数据按照从小到大的顺序排列,第1、4个数的平均数是中位数,在这组数据中出现次数最多的是1,得到这组数据的众数.【详解】要求一组数据的中位数,把这组数据按照从小到大的顺序排列2,1,1,4,5,6,第1、4个两个数的平均数是(1+4)÷2=1.5,所以中位数是1.5,在这组数据中出现次数最多的是1,即众数是1.故选:C.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.二、填空题(每题4分,共24分)13、0.1【分析】由于表中硬币出现“正面朝上”的频率在0.1左右波动,则根据频率估计概率可得到硬币出现“正面朝上”的概率为0.1.【详解】解:因为表中硬币出现“正面朝上”的频率在0.1左右波动,
所以估计硬币出现“正面朝上”的概率为0.1.
故答案为0.1.【点睛】本题考查了利用频率估计概率,随实验次数的增多,值越来越精确.14、【分析】根据顶点式即可得到顶点坐标.【详解】解:∵,∴抛物线的顶点坐标为(2,2),
故答案为(2,2).【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键.15、1【分析】直接利用扇形弧长公式代入求出即可.【详解】解:扇形的半径是1,弧长是,,即,解得:,此扇形所对的圆心角为:.故答案为:1.【点睛】此题主要考查了弧长公式的应用,正确利用弧长公式是解题关键.16、1.【分析】过A作AE⊥y轴于E过B作BF⊥y轴于F,通过△AOE∽△BOF,得到,设,于是得到AE=-m,,从而得到,,于是求得结果.【详解】解:过作轴于过作轴于,,,,,,,,设,,,,,,.故答案为1.【点睛】此题考查相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题关键在于作辅助线和利用三角函数进行解答.17、【分析】根据题意可知共有6种等可能结果,所以要使事件“红色朝上”的概率为,则需要有2种符合题意的结果,从而求解.【详解】解:∵一个质地均匀的小正方体有六个面∴在桌面上掷这个小正方体,共有6种等可能结果,其中把2个面涂为红色,则使事件“红色朝上”的概率为故答案为:2【点睛】本题考查简单的概率计算,理解概率的概念并根据概率的计算公式正确计算是本题的解题关键.18、0<x<1或x>1.【分析】根据函数图象,可得一次函数图象在上方的部分,可得答案【详解】解:∵直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和1,
∴不等式k1x+b<的解集是0<x<1或x>1.故答案为:0<x<1或x>1.【点睛】本题考查了反比例函数与一次函数的交点问题,一次函数图象在下方的部分是不等式的解集.三、解答题(共78分)19、(1)y=﹣x+5;(2)点F(,);四边形AFDE的面积的最大值为;(3)点N(0,),点P的运动路径最短距离=2+.【分析】(1)先求出点A,点C坐标,用待定系数法可求解析式;(2)先求出点D坐标,设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5),即可求EF=﹣x2+5x,可求四边形AFDE的面积,由二次函数的性质可求解;(3)由动点P的运动路径=FM+MN+NC=GM+2+MH,则当点G,点M,点H三点共线时,动点P的运动路径最小,由两点距离公式可求解.【详解】解:(1)∵抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.∴当x=0时,y=5,则点A(0,5)当y=0时,0=﹣x2+4x+5,∴x1=5,x2=﹣1,∴点B(﹣1,0),点C(5,0)设直线AC解析式为:y=kx+b,∴解得:∴直线AC解析式为:y=﹣x+5,(2)∵过点A作AD平行于x轴,∴点D纵坐标为5,∴5=﹣x2+4x+5,∴x1=0,x2=4,∴点D(4,5),∴AD=4设点F(x,﹣x2+4x+5),则点E坐标为(x,﹣x+5)∴EF=﹣x2+4x+5﹣(﹣x+5)=﹣x2+5x,∵四边形AFDE的面积=AD×EF=2EF=﹣2x2+10x=﹣2(x﹣)2+∴当x=时,四边形AFDE的面积的最大值为,∴点F(,);(3)∵抛物线y=﹣x2+4x+5=﹣(x﹣2)2+9,∴对称轴为x=2,∴MN=2,如图,将点C向右平移2个单位到点H(7,0),过点F作对称轴x=2的对称点G(,),连接GH,交直线x=2于点M,∵MN∥CH,MN=CH=2,∴四边形MNCH是平行四边形,∴NC=MH,∵动点P的运动路径=FM+MN+NC=GM+2+MH,∴当点G,点M,点H三点共线时,动点P的运动路径最小,∴动点P的运动路径最短距离=2+=2+,设直线GH解析式为:y=mx+n,∴,解得,∴直线GH解析式为:y=﹣x+,当x=2时,y=,∴点N(0,).【点睛】此题是二次函数综合题,主要考查了待定系数法求解析式,函数极值的确定方法,两点距离公式等知识,解题的关键是学会利用对称解决最短问题.20、(1)二次函数解析式为y=(x﹣2)2﹣1;一次函数解析式为y=x﹣1.(2)1≤x≤2.【分析】(1)将点A(1,0)代入y=(x-2)2+m求出m的值,根据点的对称性,将y=3代入二次函数解析式求出B的横坐标,再根据待定系数法求出一次函数解析式.(2)根据图象和A、B的交点坐标可直接求出kx+b≥(x-2)2+m的x的取值范围.【详解】解:(1)将点A(1,0)代入y=(x﹣2)2+m得,(1﹣2)2+m=0,解得m=﹣1.∴二次函数解析式为y=(x﹣2)2﹣1.当x=0时,y=2﹣1=3,∴C点坐标为(0,3).∵二次函数y=(x﹣2)2﹣1的对称轴为x=2,C和B关于对称轴对称,∴B点坐标为(2,3).将A(1,0)、B(2,3)代入y=kx+b得,,解得.∴一次函数解析式为y=x﹣1.(2)∵A、B坐标为(1,0),(2,3),∴当kx+b≥(x﹣2)2+m时,直线y=x﹣1的图象在二次函数y=(x﹣2)2﹣1的图象上方或相交,此时1≤x≤2.21、(1);(2)P(2,);(3)点的坐标为或或或.【分析】⑴代入A、B点坐标得出抛物线的交点式y=a(x+4)(x-2),然后代入C点坐标即可求出;⑵首先根据勾股定理可以求出AC=5,通过PE∥y轴,得到△PED∽△AOC,PD:AO=DE:OC=PE:AC,得到PD:4=DE:3=PE:5,PD,DE分别用PE表示,可得△PDE的周长=PE,要使△PDE周长最大,PE取最大值即可;设P点的横坐标a,那么纵坐标为a2+a-3,根据E点在AC所在的直线上,求出解析式,那么E点的横坐标a,纵坐标-a-3,从而求出PE含a的二次函数式,求出PE最大值,进而求出P点坐标及△PDE周长.⑶分类讨论①当BM为对角线时点F在y轴上,根据对称性得到点F的坐标.②当BM为边时,BC也为边时,求出BC长直接可以写出F点坐标,分别是点M在轴负半轴上时,点F的坐标为;点M在轴正半轴上时,点F的坐标为.③当BM为边时,BC也为对角线时,首先求出BC所在直线的解析式,然后求出BC中点的坐标,MF所在直线也经过这点并且与BC所在的直线垂直,所以可以求出MF所在直线的解析式,可以求出M点坐标,求出F点的横坐标,代入MF解析式求出纵坐标,得到F【详解】解:抛物线经过点,它们的坐标分别为,故设其解析式为.又抛物线经过点,代入解得,则抛物线的解析式为.,..又轴,,∴△PDE∽△AOC.,即,∴的周长则要使周长最大,取最大值即可.易得所在直线的解析式为.设点,则,当时,取得最大值,最大值为,则.点的坐标为或或或提示:具体分情况进行讨论,如图.①为对角线时,显然,点在轴上,根据对称性得到点的坐标为;②当为边时,,则有以下几种情况:(I)为边时,点在轴负半轴上时,点的坐标为;点在轴正半轴上时,点的坐标为.(I)为对角线时,根据点,点可得所在直线的解析式为中点的坐标为则MF所在的直线过线段的中点,并垂直于,得到其解析式为.交轴于点,则点的横坐标为,代入的解析式得到,故点的坐标为,综上所述,点的坐标为或或或【点睛】此题主要考查了二次函数的综合问题,熟练掌握二次函数、一次函数以及菱形的相关性质是解题的关键,注意分类讨论.22、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)【分析】(1)c=1,点B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【详解】(1)∵OB=OC=1,∴点C的坐标为C(0,1),c=1,点B的坐标为B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴于点H,交BC于点M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,设直线BC的表达式为:,将C(0,1),B(1,0)代入得,解得:,∴直线BC的表达式为:y=﹣x+1,设点D的坐标为(x,﹣x2+2x+1),则点M(x,﹣x+1),∴DM==2,解得:x=1或2,故点D的坐标为:(1,4)或(2,1);(1)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,如图,∵点E的坐标为(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,设MH=x,则MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,则OM=MG+GO=+,点M的坐标为(0,4),设直线BM的表达式为:,将点B(1,0)、M(0,4)代入得:,解得:,∴直线BM的表达式为:y=x+4,解方程组解得:x=1(舍去)或,将x=代入y=x+4得y=,故点P的坐标为(,);②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分线,∴EN=OE=,BN=OB=1,设MN=x,则ME=,在△OBM中,OB2+OM2=MB2,即,解得:,∴,则OM=ME+EO=+,点M的坐标为(0,-4),设直线BM的表达式为:,将点B(1,0)、M(0,-4)代入得:,解得:,∴直线BM的表达式为:,解方程组解得:x=1(舍去)或,将x=代入得,故点P的坐标为(,);综上,点P的坐标为:(,)或(,).【点睛】本题考查的是二次函数的综合运
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电子产品研发与技术转让合同
- 2024年度医疗机构信息化管理系统定制开发合同
- 设备销售合同
- 2024年度企业销售业务外包合同
- 2024年度汽车租赁合同保密协议2篇
- 二零二四年石油管道建设与运营合同
- 2024年度汽车修理厂劳动合同2篇
- 2024年度电商投资项目信息安全协议
- 二零二四年废弃物搬运清理合同
- 二零二四年度版权许可使用合同详细条款及标的说明
- 沙迪克线切割维护手册教案资料
- 先秦诸子百家课件
- 演绎法教学讲解课件
- 钛白粉基础知识及的应用课件
- 2022版义务教育(道德与法治)课程标准(含2022年修订部分)
- 第二思维找主体词
- 05 02 第五章第二节 吸收借鉴优秀道德成果
- 动物模型课件
- is620p系列伺服用户手册-v0.2综合版
- “说优点、讲不足”主题班会
- 健康体检知情同意书-2
评论
0/150
提交评论