版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.点点同学对数据25,43,28,2□,43,36,52进行统计分析,发现其中一个两位数的个位数被墨水涂污看不到了,则计算结果与涂污数字无关的是()A.平均数 B.中位数 C.方差 D.众数2.过反比例函数图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为()A.-6 B.-3 C.3 D.63.已知关于轴对称点为,则点的坐标为()A. B. C. D.4.已知,那么下列等式中,不一定正确的是()A. B. C. D.5.将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A. B. C. D.6.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或37.如图,方格纸中4个小正方形的边长均为2,则图中阴影部分三个小扇形的面积和为()A. B. C. D.8.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A. B. C. D.10.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c=0有两个相等的实数根.其中正确结论的个数为()A.1个 B.2个 C.3个 D.4个11.一元二次方程x2+4x=5配方后可变形为()A.(x+2)2=5 B.(x+2)2=9 C.(x﹣2)2=9 D.(x﹣2)2=2112.已知圆锥的底面半径为5,母线长为13,则这个圆锥的全面积是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在中,.动点以每秒个单位的速度从点开始向点移动,直线从与重合的位置开始,以相同的速度沿方向平行移动,且分别与边交于两点,点与直线同时出发,设运动的时间为秒,当点移动到与点重合时,点和直线同时停止运动.在移动过程中,将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,连接,当时,的值为___________.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则不等式ax2>bx+c的解集是_________.15.已知四条线段a、2、6、a+1成比例,则a的值为_____.16.已知,则的值是_____.17.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.18.已知∽,若周长比为4:9,则_____________.三、解答题(共78分)19.(8分)某区各街道居民积极响应“创文明社区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍.(1)求A社区居民人口至少有多少万人?(2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二个月增长了2m%,两个月后,街道居民的知晓率达到76%,求m的值.20.(8分)如图,已知方格纸中的每个小方格都是相同的正方形(边长为1),方格纸上有一个角∠AOB,A,O,B均为格点,请回答问题并只用无刻度直尺和铅笔,完成下列作图并简要说明画法:(1)OA=_____,(2)作出∠AOB的平分线并在其上标出一个点Q,使.21.(8分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.22.(10分)如图所示,已知二次函数y=-x2+bx+c的图像与x轴的交点为点A(3,0)和点B,与y轴交于点C(0,3),连接AC.(1)求这个二次函数的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标及△ACD面积的最大值,若不存在,请说明理由.(3)在抛物线上是否存在点E,使得△ACE是以AC为直角边的直角三角形如果存在,请直接写出点E的坐标即可;如果不存在,请说明理由.23.(10分)已知二次函数y=(x-m)(x+m+4),其中m为常数.(1)求证:不论m为何值,该二次函数的图像与x轴有公共点.(2)若A(-1,a)和B(n,b)是该二次函数图像上的两个点,请判断a、b的大小关系.24.(10分)如图,某防洪堤坝长300米,其背水坡的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得加固后坡面的坡角∠ADB=50°(1)求此时应将坝底向外拓宽多少米?(结果保留到0.01米)(2)完成这项工程需要土石多少立方米?(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)25.(12分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.26.某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.
参考答案一、选择题(每题4分,共48分)1、B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】这组数据的平均数、方差和标准差都与第4个数有关,而这组数据从小到大排序后,位于中间位置的数是36,与十位数字是2个位数字未知的两位数无关,∴计算结果与涂污数字无关的是中位数.故选:B.【点睛】本题考查了标准差:样本方差的算术平方根表示样本的标准差,它也描述了数据对平均数的离散程度.也考查了中位数、平均数.2、D【分析】根据反比例函数的几何意义可知,矩形的面积为即为比例系数k的绝对值,即可得出答案.【详解】设B点坐标为(x,y),由函数解析式可知,xy=k=-6,则可知S矩形ABCO=|xy|=|k|=6,故选:D.【点睛】本题考查了反比例函数系数k的几何意义,关键是理解图中矩形的面积为即为比例系数k的绝对值.3、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.4、B【分析】根据比例的性质作答.【详解】A、由比例的性质得到3y=5x,故本选项不符合题意.
B、根据比例的性质得到x+y=8k(k是正整数),故本选项符合题意.
C、根据合比性质得到,故本选项不符合题意.
D、根据等比性质得到,故本选项不符合题意.
故选:B.【点睛】此题考查了比例的性质,解题关键在于需要掌握内项之积等于外项之积、合比性质和等比性质.5、D【分析】由平移可知,抛物线的开口方向和大小不变,顶点改变,将抛物线化为顶点式,求出顶点,再由平移求出新的顶点,然后根据顶点式写出平移后的抛物线解析式.【详解】解:,即抛物线的顶点坐标为,把点向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为,所以平移后得到的抛物线解析式为.故选D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.6、A【分析】直接把x=2代入已知方程就得到关于m的方程,再解此方程即可.【详解】解:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣1.故选:A.【点睛】本题考查的是一元二次方程的解,难度系数较低,直接把解代入方程即可.7、D【分析】根据直角三角形的两锐角互余求出∠1+∠2=90°,再根据正方形的对角线平分一组对角求出∠3=45°,然后根据扇形面积公式列式计算即可得解.【详解】解:由图可知,∠1+∠2=90°,∠3=45°,
∵正方形的边长均为2,
∴阴影部分的面积=.
故选:D.【点睛】本题考查了中心对称,观察图形,根据正方形的性质与直角三角形的性质求出阴影部分的圆心角是解题的关键.8、B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.9、D【解析】试题分析:由抛物线开口向上可知a>0,故A错误;由对称轴在轴右侧,可知a、b异号,所以b<0,故B错误;由图象知当x=1时,函数值y小于0,即a+b+c<0,故C错误;由图象知当x=-2时,函数值y大于0,即4a-2b+c>0,故D正确;故选D考点:二次函数中和符号10、B【分析】先从二次函数图像获取信息,运用二次函数的性质一—判断即可.【详解】解:∵二次函数与x轴有两个交点,∴b2-4ac>0,故①错误;∵抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,且抛物线开口向下,∴当x=1时,有y=a+b+c<0,故②正确;∵函数图像的顶点为(-1,2)∴a-b+c=2,又∵由函数的对称轴为x=-1,∴=-1,即b=2a∴a-b+c=a-2a+c=c-a=2,故③正确;由①得b2-4ac>0,则ax2+bx+c=0有两个不等的实数根,故④错误;综上,正确的有两个.故选:B.【点睛】本题考查了二次函数的图像与系数的关系,从二次函数图像上获取有用信息和灵活运用数形结合思想是解答本题的关键.11、B【分析】两边配上一次项系数一半的平方可得.【详解】∵x2+4x=5,∴x2+4x+4=5+4,即(x+2)2=9,故选B.【点睛】本题主要考查解一元二次方程的基本技能,熟练掌握解一元二次方程的常用方法和根据不同方程灵活选择方法是解题的关键.12、B【分析】先根据圆锥侧面积公式:求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=,所以这个圆锥的全面积=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.二、填空题(每题4分,共24分)13、【分析】由题意得CP=10-3t,EC=3t,BE=16-3t,又EF//AC可得△ABC∽△FEB,进而求得EF的长;如图,由点P的对应点M落在EF上,点F的对应点为点N,可知∠PEF=∠MEN,由EF//AC∠C=90°可以得出∠PEC=∠NEG,又由,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,过N做NG⊥BC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为秒时;由题意得:CP=10-3t,EC=3t,BE=16-3t∵EF//AC∴△ABC∽△FEB∴∴∴EF=在Rt△PCE中,PE=如图:过N做NG⊥BC,垂足为G∵将绕点逆时针旋转,使得点的对应点落在直线上,点的对应点记为点,∴∠PEF=∠MEN,EF=EN,又∵EF//AC∴∠C=∠CEF=∠MEB=90°∴∠PEC=∠NEG又∵∴∠CBN=∠CEP.∴∠CBN=∠NEG∵NG⊥BC∴NB=EN,BG=∴NB=EN=EF=∵∠CBN=∠NEG,∠C=NGB=90°∴△PCE∽△NGB∴∴=,解得t=或-(舍)故答案为.【点睛】本题考查了相似三角形的判定及性质的运用、三角函数值的运用、勾股定理的运用,灵活利用相似三角形的性质和勾股定理是解答本题的关键.14、x<-2或x>1【分析】根据图形抛物线与直线的两个交点情况可知,不等式的解集为抛物线的图象在直线图象的上方对应的自变量的取值范围.【详解】如图所示:
∵抛物线与直线的两个交点坐标分别为,
∴二次函数图象在一次函数图象上方时,即不等式的解集为:或.
故答案为:或.【点睛】本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解不等式.15、3【分析】由四条线段a、2、6、a+1成比例,根据成比例线段的定义,即可得=,即可求得a的值.【详解】解:∵四条线段a、2、6、a+1成比例,∴=,∵a(a+1)=12,解得:a1=3,a2=-4(不符合题意,舍去).故答案为3.【点睛】本题考查了线段成比例的定义:若四条线段a,b,c,d成比例,则有a:b=c:d.16、【解析】因为已知,所以可以设:a=2k,则b=3k,将其代入分式即可求解.【详解】∵,∴设a=2k,则b=3k,∴.故答案为.【点睛】本题考查分式的基本性质.17、(0,﹣1)【解析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.18、4:1【分析】根据相似三角形周长的比等于相似比解答即可.【详解】∵△ABC∽△DEF,∴.故答案为:4:1.【点睛】本题考查了相似三角形的性质,牢记相似三角形(多边形)的周长的比等于相似比是解题的关键.三、解答题(共78分)19、(1)A社区居民人口至少有2.1万人;(2)10.【分析】(1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可;
(2)A社区的知晓人数+B社区的知晓人数=7.1×76%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.1−x)万人,
依题意得:7.1−x≤2x,
解得x≥2.1.
即A社区居民人口至少有2.1万人;
(2)依题意得:1.2(1+m%)2+1×(1+m%)×(1+2m%)=7.1×76%,
设m%=a,方程可化为:1.2(1+a)2+(1+a)(1+2a)=1.7,
化简得:32a2+14a−31=0,
解得a=0.1或a=−(舍),
∴m=10,
答:m的值为10.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.20、5【解析】(1)依据勾股定理即可得到OA的长;(2)取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.【详解】解:(1)由勾股定理,可得AO==5,故答案为5;(2)如图,取格点C,D,连接AB,CD,交于点P,作射线OP即为∠AOB的角平分线;如图,取格点E,F,G,连接FE,交OP于Q,则点Q即为所求.理由:由勾股定理可得OG=2,由△FQG∽△EQO,可得=,∴OQ=OG=.【点睛】本题考查作图﹣复杂作图、角平分线的性质等知识,解题的关键是熟练掌握等腰三角形的性质的应用,角平分线的性质的应用,勾股定理以及相似三角形的性质.21、【分析】根据题意画出图形,结合锐角三角函数的定义选择合适的函数即可。【详解】∵∠B=60°,a=2【点睛】本题考查解直角三角形,根据已知条件选择合适的三角函数是解题的关键。22、(1)y=-x2+2x+1;(2)抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值;(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).【分析】(1)因为点A(1,0),点C(0,1)在抛物线y=−x2+bx+c上,可代入确定b、c的值;(2)过点D作DH⊥x轴,设D(t,-t2+2t+1),先利用图象上点的特征表示出S△ACD=S梯形OCDH+S△AHD-S△AOC=,再利用顶点坐标求最值即可;(1)分两种情况讨论:①过点A作AE1⊥AC,交抛物线于点E1,交y轴于点F,连接E1C,求出点F的坐标,再求直线AE的解析式为y=x−1,再与二次函数的解析式联立方程组求解即可;②过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2,求出直线CM的解析式为y=x+1,再与二次函数的解析式联立方程组求解即可.【详解】(1)解:∵二次函数y=-x2+bx+c与x轴的交点为点A(1,0)与y轴交于点C(0,1)∴解之得∴这个二次函数的解析式为y=-x2+2x+1(2)解:如图,设D(t,-t2+2t+1),过点D作DH⊥x轴,垂足为H,则S△ACD=S梯形OCDH+S△AHD-S△AOC=(-t2+2t+1+1)+(1-t)(-t2+2t+1)-×1×1==∵<0∴当t=时,△ACD的面积有最大值此时-t2+2t+1=∴抛物线上存在点D,使得△ACD的面积最大,此时点D的坐标为(,)且△ACD面积的最大值(1)在抛物线上存在点E,使得△ACE是以AC为直角边的直角三角形点E的坐标是(1,4)或(-2,-5).理由如下:有两种情况:①如图,过点A作AE1⊥AC,交抛物线于点E1、交y轴于点F,连接E1C.∵CO=AO=1,∴∠CAO=45°,∴∠FAO=45°,AO=OF=1.∴点F的坐标为(0,−1).设直线AE的解析式为y=kx+b,将(0,−1),(1,0)代入y=kx+b得:解得∴直线AE的解析式为y=x−1,由解得或∴点E1的坐标为(−2,−5).②如图,过点C作CE⊥CA,交抛物线于点E2、交x轴于点M,连接AE2.∵∠CAO=45°,∴∠CMA=45°,OM=OC=1.∴点M的坐标为(−1,0),设直线CM的解析式为y=kx+b,将(0,1),(-1,0)代入y=kx+b得:解得∴直线CM的解析式为y=x+1.由解得:或∴点E2的坐标为(1,4).综上,在抛物线上存在点E1(−2,−5)、E2(1,4),使△ACE1、△ACE2是以AC为直角边的直角三角形.【点睛】本题考查了用待定系数法求二次函数解析式、二次函数的最值问题,二次函数中的直角三角形问题.观察图象、求出特殊点坐标是解题的关键.23、(1)见解析;(2)①当n=-3时,a=b;②当-3<n<-1时,a>b;③当n<-3或n>-1时,a<b【分析】(1)方法一:当y=0时,(x-m)(x-m-1)=0,解得x1=m,x2=-m-1,即可得到结论;方法二:化简得y=x2+1x-m2-1m,令y=0,可得b2-1ac≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a与b的大小.【详解】(1)方法一:令y=0,(x-m)(x+m+1)=0,解得x1=m;x2=-m-1.当m=-m-1,即m=-2,方程有两个相等的实数根,故二次函数与x轴有一个公共点;当m≠-m-1,即m≠-2,方程有两个不相等的实数根,故二次函数与x轴有两个公共点.综上不论m为何值,该二次函数的图像与x轴有公共点.方法二:化简得y=x2+1x-m2-1m.令y=0,b2-1ac=1m2+16m+16=1(m+2)2≥0,方程有两个实数根.∴不论m为何值,该二次函数的图像与x轴有公共点.(2)由题意知,函数的图像的对称轴为直线x=-2①当n=-3时,a=b;②当-3<n<-1时,a>b③当n<-3或n>-1时,a<b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程,并且注意分情况讨论.24、(1)应将坝底向外拓宽大约6.58米;(2)21714立方米【分析】(1)过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE-BE即可求解;(2)用△ABD的面积乘以坝长即为所需的土石的体积.【详解】解:(1)过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°≈25×0.88=22米,BE=AB•cos62°≈25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18.33米,∴DB=DE-BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.(2)6.58×22××300=21714立方米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,两个直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年定制化客户合作协议
- 厂区园林景观养护服务协议模板2024
- 2024年度高品质铝单板购销协议
- 2023-2024学年浙江省绍兴市重点中学第二学期高三数学试题统练(一)
- 2024年专业吊车租赁服务协议范本
- 2024跨境航空货物运输协议范本
- 2024年度高级店长任职协议
- 2024种苗行业购销协议样本
- 城市水沟2024年清理维护协议样式
- 2024年个人经营店铺租赁协议
- 骨骼肌肉系统影像诊断(160页)
- 铁路信号基础继电器ppt课件
- 污水设计构筑物的计算
- 武当太极剑剑谱(49式)详细介绍及招式名称汇总
- 风量、温度、噪声测试记录填写范例
- 特种作业人员台账.doc
- 国家开放大学《管理英语1》边学边练参考答案
- (完整版)装饰装修工程监理细则(详解)最新(精华版)
- 电焊中级工(四级)职业技能鉴定考试题库
- 多巴胺的药理作用及用法PPT参考幻灯片
- 钢结构网架翻新改造施工方案
评论
0/150
提交评论