版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.⊙O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()A. B.C. D.2.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm3.已知,是圆的半径,点,在圆上,且,若,则的度数为()A. B. C. D.4.若是一元二次方程,则的值是()A.-1 B.0 C.1 D.±15.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.3和2
B.4和2
C.2和2
D.2和46.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A. B. C.3 D.57.如图是由几个相同的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,这个几何体的主视图是()A. B. C. D.8.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为()A. B. C. D.9.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对 B.2对 C.3对 D.4对10.如图,某中学计划靠墙围建一个面积为的矩形花圃(墙长为),围栏总长度为,则与墙垂直的边为()A.或 B. C. D.11.下列两个图形,一定相似的是()A.两个等腰三角形 B.两个直角三角形C.两个等边三角形 D.两个矩形12.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.二、填空题(每题4分,共24分)13.正五边形的中心角的度数是_____.14.如图,将绕点逆时针旋转,得到,这时点恰好在同一直线上,则的度数为______.15.当_________时,关于的一元二次方程有两个实数根.16.方程x2=2020x的解是_____.17.已知线段a=4,b=9,则a,b的比例中项线段长等于________.18.若关于的方程和的解完全相同,则的值为________.三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.20.(8分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).21.(8分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.22.(10分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?23.(10分)当时,求的值.24.(10分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求的值.25.(12分)解方程:x2﹣2x﹣2=1.26.如图,在一笔直的海岸线上有A,B两观景台,A在B的正东方向,BP=5(单位:km),有一艘小船停在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(1)求A、B两观景台之间的距离;(2)小船从点P处沿射线AP的方向进行沿途考察,求观景台B到射线AP的最短距离.(结果保留根号)
参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】解:∵⊙O的半径为5,圆心O到直线l的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故选:B.【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.2、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.3、D【分析】连接OC,根据圆周角定理求出∠AOC,再根据平行得到∠OCB,利用圆内等腰三角形即可求解.【详解】连接CO,∵∴∠AOC=2∵∴∠OCB=∠AOC=∵OC=BO,∴=∠OCB=故选D.【点睛】此题主要考查圆周角定理,解题的关键是熟知圆的基本性质及圆周角定理的内容.4、C【分析】根据一元二次方程的概念即可列出等式,求出m的值.【详解】解:若是一元二次方程,则,解得,又∵,∴,故,故答案为C.【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键.5、A【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数;据此先求得x的值,再将数据按从小到大排列,将中间的两个数求平均值即可得到中位数,众数是出现次数最多的数.【详解】这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8;中位数是(2+4)÷2=3,2在这组数据中出现2次,4出现一次,8出现一次,所以众数是2;故选:A.【点睛】本题考查平均数和中位数和众数的概念.6、B【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【详解】过点D做DF⊥BC于F,由已知,BC=5,∵四边形ABCD是菱形,∴DC=5,∵BE=3DE,∴设DE=x,则BE=3x,∴DF=3x,BF=x,FC=5-x,在Rt△DFC中,DF2+FC2=DC2,∴(3x)2+(5-x)2=52,∴解得x=1,∴DE=1,FD=3,设OB=a,则点D坐标为(1,a+3),点C坐标为(5,a),∵点D、C在双曲线上,∴1×(a+3)=5a,∴a=,∴点C坐标为(5,)∴k=.故选B.【点睛】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.7、A【分析】由几何体的俯视图观察原立体图形中正方体的位置关系【详解】由俯视图可以看出一共3列,右边有前后2排,后排是2个小正方体,前面一排有1个小正方体,其他两列都是1个小正方体,由此可判断出这个几何体的主视图是A.故选A.8、B【解析】抛掷一枚骰子有1、2、3、4、5、6种可能,其中所得的点数能被3整除的有3、6这两种,∴所得的点数能被3整除的概率为,故选B.【点睛】本题考查了简单的概率计算,熟记概率的计算公式是解题的关键.9、C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.10、C【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.11、C【解析】根据相似三角形的判定方法一一判断即可;所应用判断方法:两角对应相等,两三角形相似.【详解】解:∵两个等边三角形的内角都是60°,
∴两个等边三角形一定相似,
故选C.【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.12、B【解析】由题意根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题(每题4分,共24分)13、72°.【分析】根据正多边形的圆心角定义可知:正n边形的圆中心角为,则代入求解即可.【详解】解:正五边形的中心角为:.故答案为72°.【点睛】此题考查了正多边形的中心角的知识.题目比较简单,注意熟记定义.14、20°【解析】先判断出∠BAD=140°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【详解】∵将△ABC绕点A逆时针旋转140°,得到△ADE,∴∠BAD=140°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为140°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°−∠BAD)=20°,故答案为:20°【点睛】此题考查旋转的性质,等腰三角形的判定与性质,三角形内角和定理,解题关键在于判断出△BAD是等腰三角形15、【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】∵关于的一元二次方程有两个实数根∴解得:故答案为:【点睛】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.16、x1=0,x2=1.【分析】利用因式分解法求解可得.【详解】移项得:x2﹣1x=0,∴x(x﹣1)=0,则x=0或x﹣1=0,解得x1=0,x2=1,故答案为:x1=0,x2=1.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.17、1【分析】根据比例中项的定义,列出比例式即可求解.【详解】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积,
∴,即,解得,(不合题意,舍去)
故答案为:1.【点睛】此题考查了比例线段;理解比例中项的概念,注意线段不能是负数.18、1【分析】先分解因式,根据两方程的解相同即可得出答案.【详解】解:,,∵关于x的方程和的解完全相同,∴a=1,故答案为:1.【点睛】本题考查了解一元二次方程,能正确用因式分解法解方程是解此题的关键.三、解答题(共78分)19、(1)①y=x2﹣8x+3;②线段MQ的最大值为1.(2)m+n的值为定值.m+n=2.【分析】(1)①根据点B的坐标和二次函数图象的对称轴即可求出二次函数解析式;②设M(m,m2﹣8m+3),利用待定系数法求出直线BC的解析式,从而求出Q(m,﹣2m+3),即可求出MQ的长与m的函数关系式,然后利用二次函数求最值即可;(2)将B(2,0)代入二次函数解析式中,求出二次函数解析式即可求出点C的坐标,然后利用待定系数法求出直线BC的解析式,根据一次函数的性质设出直线MN的解析式,然后联立方程结合一元二次方程根与系数的关系即可得出结论.【详解】(1)①由题意,解得,∴二次函数的解析式为y=x2﹣8x+3.②如图1中,设M(m,m2﹣8m+3),∵B(2,0),C(0,3),∴直线BC的解析式为y=﹣2x+3,∵MQ⊥x轴,∴Q(m,﹣2m+3),∴QM=﹣2m+3﹣(m2﹣8m+3)=﹣m2+2m=﹣(m﹣3)2+1,∵﹣1<0,∴m=3时,QM有最大值,最大值为1.(2)结论:m+n的值为定值.理由:如图2中,将B(2,0)代入二次函数解析式中,得解得:∴二次函数解析式为∴C(0,﹣32﹣2b),设直线BC的解析式为y=kx﹣32﹣2b,把(2,0)代入得到:k=2+b,∴直线BC的解析式为y=(2+b)x﹣32﹣2b,∵MN∥CB,∴可以假设直线MN的解析式为y=(2+b)x+b′,由,消去y得到:x2﹣2x﹣32﹣2b﹣b′=0,∴x1+x2=2,∵点M、N的横坐标为m、n,∴m+n=2.∴m+n为定值,m+n=2.【点睛】此题考查的是二次函数与一次函数的综合题型,掌握利用待定系数法求二次函数解析式、一次函数解析式、利用二次函数求最值、一元二次方程根与系数的关系是解决此题的关键.20、(1);(2)0.6【分析】(1)装有张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【详解】解:(1)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,5张卡片中偶数有2张,抽出偶数卡片的概率=(2)画树状如图概率为【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图.21、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.22、(1)见解析;(2).【解析】计算根的判别式,证明;因式分解求出原方程的两个根,根据m为整数、两个不相等的正整数根得到m的值.【详解】,,,,即,不论m为何值,方程总有实数根.,,,方程有两个不相等的正整数根,.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的解法解决的关键是用因式分解法求出方程的两个根.23、【分析】先对分式进行化简,然后代值计算.【详解】原式=将代入得故答案为:【点睛】本题考查分式的化简,注意先化简过程中,可以适当使用乘法公式,从而简化计算.24、(1)k=2,B(-1,-2);(2)2【分析】(1)先利用正比例函数解析式确定,再把点坐标代入中求出得到反比例函数解析式为,然后解方程组得点坐标;(2)作于,如图,利用等角的余角相等得到,然后在中利用正切的定义求出的值,即=的值.【详解】解:(1)把代入得,则,把代入得,反比例函数解析式为,解方程组得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《盐 化肥》单元测试(解析版)
- 二零二四年度品牌推广独家合作协议
- 2024年度地铁口咖啡厅租赁合同3篇
- 2024年度技术研发合作合同(标的:智能机器人研发)
- 2024年度分公司注销全程服务合同
- 浙江省金华市兰溪市兰溪市第二中学2023-2024学年七年级上学期10月月考数学试题(解析版)-A4
- 代理推广合同模板(04版)
- 信用卡的合同范本大全3篇
- 保险公司与单位合作协议
- 2024年度电梯消防设施改造合同
- 飞机总体设计设计过程及算例
- 矿山开采与环境保护
- 健康管理解决方案
- 质子泵抑制剂用药参考汇总
- 初三化学半期考试总结(实用十五篇)
- 认识飞机(课堂PPT)
- 妊娠期高血压疾病护理论文
- 《国歌法》、《国旗法》主题班会
- 外研三起四年级上册 Module 8 单元集体备课和教学设计
- 【基于安卓系统的电商APP设计与实现4500字(论文)】
- 2023年历史竞赛题
评论
0/150
提交评论