天津塘沽区盐场中学 2023年高一数学文下学期期末试题含解析_第1页
天津塘沽区盐场中学 2023年高一数学文下学期期末试题含解析_第2页
天津塘沽区盐场中学 2023年高一数学文下学期期末试题含解析_第3页
天津塘沽区盐场中学 2023年高一数学文下学期期末试题含解析_第4页
天津塘沽区盐场中学 2023年高一数学文下学期期末试题含解析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天津塘沽区盐场中学2023年高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直线直线,有下列命题:

③;

其中正确的命题是(

A、①与②

B、③与④

C、②与④

D、①与③参考答案:D略2.正方体ABCD﹣A1B1C1D1中,异面直线AC与C1D所成的角为()A. B. C. D.参考答案:B【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AC与C1D所成的角.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为1,则A(1,0,0),C(0,1,0),D(0,0,0),C1(0,1,1),=(﹣1,1,0),=(0,﹣1,﹣1),设异面直线AC与C1D所成的角为θ,则cosθ=|cos<>|===,∴θ=.∴异面直线AC与C1D所成的角为.故选:B.3.与向量=(3,4)共线反向的单位向量=()A.(﹣,﹣) B.(﹣,)C.(﹣,﹣),(,) D.(,)参考答案:A【考点】平面向量共线(平行)的坐标表示.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】求出向量的模,即可求解单位向量.【解答】解:向量=(3,4),则||=5,∴共线反向的单位向量=﹣(3,4)=(﹣,﹣),故选:A.【点评】本题考查单位向量的求法,基本知识的考查.4.在等比数列中,若和是二次方程的两个根,则的值为(

A.

B.

C.

D.25参考答案:B5.若直线与曲线有两个公共点,则实数m的取值范围是(

)A. B.C. D.参考答案:B【分析】由于曲线表示原点为圆心,半径为2的半圆,根据题意画出图形,找出两个特殊的位置:1.直线y=x+m与半圆相切;2.直线y=x+m过点(2,0),当直线与半圆相切时,利用点到直线的距离公式表示圆心到直线的距离d,让d等于半径列出关于m的方程,求出m的值,写出满足题意的m的范围即可.【详解】由,得到,如图,当直线与圆相切时,因此:若直线与圆有两个公共点,则实数的取值范围是:.故选:B【点睛】本题考查了直线和半圆的位置关系,考查了学生转化与划归,数形结合的能力,属于中档题.6.若等差数列满足,则当的前n项和最大时n的值为(

)A.7

B.8

C.9

D.10参考答案:B7.已知函数y=tan(2x+)()的对称中心是点,则的值是()A.-

B.

C.-或 D.或参考答案:C略8.在中,,则等于(

)A、

B、

C、或

D、参考答案:C9.由公差为d的等差数列a1、a2、a3…重新组成的数列a1+a4,a2+a5,a3+a6…是()A.公差为d的等差数列

B.公差为2d的等差数列C.公差为3d的等差数列

D.非等差数列参考答案:B10.对于一个底边在x轴上的三角形,采用斜二测画出作出其直观图,其直观图面积是原三角形面积的()A.2倍 B.倍 C.倍 D.倍参考答案:B【考点】LB:平面图形的直观图.【分析】一般性结论,特殊情况一定成立,作出Rt△ABO的平面图形,对应的斜二侧图形,求它们的面积比即可.【解答】解:OA=a

OB=2b则O′A′=a

O′B′=bS△ABO=ab故选B.二、填空题:本大题共7小题,每小题4分,共28分11.(4分)在平面直角坐标系中,△ABC的三个顶点为A(3,﹣1),B(﹣1,1),C(1,3),则由△ABC围成的区域所表示的二元一次不等式组为_________.参考答案:12.对于下列语句(1)

(2)

(3)

(4)其中正确的命题序号是

。(全部填上)参考答案:(2)(3)13.若偶函数在上是增函数,则下列关系式中成立的是(

)A.

B.C.

D.参考答案:D略14.参考答案:15.在△ABC中,已知A=45°,B=105°,则的值为.参考答案:【考点】正弦定理.【分析】由题意和内角定理求出角C,根据正弦定理求出的值.【解答】解:在△ABC中,∵A=45°,B=105°,∴C=180°﹣A﹣B=30°,由正弦定理得,则==,故答案为:.16.在数列中,,,那么的通项公式是

。参考答案:17.(5分)在正方体ABCD﹣A1B1C1D1中,给出下列结论:①AC⊥B1D1;②AC1⊥B1C;③AB1与BC1所成的角为60°;④AB与A1C所成的角为45°.其中所有正确结论的序号为

.参考答案:①②③考点: 命题的真假判断与应用;棱柱的结构特征.专题: 空间位置关系与距离;空间角;简易逻辑.分析: 利用直线与直线垂直的判断方法判断①的正误;通过直线与平面垂直的判定定理证明结果,判断②的正误;根据异面直线所成角的定义与正方体的性质可得异面直线AB1,BC1所成的角为60°,判断③的正误;通过异面直线所成角求解结果,判断④的正误解答: 对于①,因为几何体是正方体,BD∥B1D1,AC⊥BD,∴AC⊥B1D1;∴①正确.对于②,B1C⊥C1B,B1C⊥AB,可得B1C⊥平面ABC1,∴AC1⊥B1C,∴②正确.对于③,连结B1D1、AD1,得∠B1AD1就是异面直线AB1,BC1所成的角,∵△B1AD1是等边三角形,∴∠B1AD1=60°因此异面直线AB1,BC1所成的角为60°,得到③正确.对于④,AB与A1C所成的角,就是CD与A1C所成的角,三角形A1CD是直角三角形,不是等腰直角三角形,所以AB与A1C所成的角为45°不正确.∴④不正确;故答案为:①②③.点评: 本题给出正方体中的几个结论,判断其正确与否,着重考查了正方体的性质、线面垂直与平行的判定与性质、异面直线所成角的定义与求法等知识,属于中档题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,直三棱柱ABC—A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1中点.(1)求证:C1D⊥平面A1B1BA;

(2)当点F在BB1上什么位置时,会使得AB1⊥平面C1DF?并证明你的结论.参考答案:19.已知数列的前项和.(1)证明数列为等差数列,求出数列的通项公式.(2)若不等式对任意恒成立,求的取值范围.参考答案:见解析.解:()当时,得,当时,,,两式相减得,即,∴,又,∴数列是以为首项,为公差的等差数列.()由()知,即,∵,∴不等式等价于,记,时,,∴当时,,,∴,即,∴的取值范围是:.20.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?参考答案:【考点】根据实际问题选择函数类型;函数的最值及其几何意义.【分析】(Ⅰ)严格按照题中月租金的变化对能租出车辆数的影响列式解答即可;(Ⅱ)从月租金与月收益之间的关系列出目标函数,再利用二次函数求最值的知识,要注意函数定义域优先的原则.作为应用题要注意下好结论.【解答】解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为,所以这时租出了88辆车.(Ⅱ)设每辆车的月租金定为x元,则租赁公司的月收益为,整理得.所以,当x=4050时,f(x)最大,最大值为f已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=.(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.【答案】【解析】【考点】函数单调性的判断与证明;函数解析式的求解及常用方法;函数奇偶性的判断.【分析】(1)利用f(﹣1)=0和函数f(x)的值域为[0,+∞),建立方程关系,即可求出a,b,从而确定F(x)的表达式;(2)在(1)的条件下,当x∈[﹣2,2]时,利用g(x)=f(x)﹣kx的单调区间与对称轴之间的关系建立不等式进行求解即可.(3)利用mn<0,m+n>0,a>0,且f(x)是偶函数,得到b=0,然后判断F(m)+F(n)的取值.【解答】解:(1)∵f(﹣1)=0,∴a﹣b+1=0,①∵函数f(x)的值域为[0,+∞),∴a>0且判别式△=0,即b2﹣4a=0,②由①②得a=1,b=2.∴f(x)=ax2+bx+1=x2+2x+1.∴F(x)=.(2)g(x)=f(x)﹣kx=x2+(2﹣k)x+1,函数的对称轴为x=,要使函数g(x)=f(x)﹣kx,在x∈[﹣2,2]上是单调函数,则区间[﹣2,2]必在对称轴的一侧,即或,解得k≥6或k≤﹣2.即实数k的取值范围是k≥6或k≤﹣2.(3)∵f(x)是偶函数,∴f(﹣x)=f(x),即ax2﹣bx+1=ax2+bx+1,∴2bx=0,解得b=0.∴f(x)=ax2+1.∴F(x)=.∵mn<0,m+n>0,a>0,不妨设m>n,则m>0,n<0,∴F(m)+F(n)=am2+1﹣an2﹣1=a(m2﹣n2)=a(m﹣n)(m+n),∵m+n>0,a>0,m﹣n>0,∴F(m)+F(n)=a(m﹣n)(m+n)>0.21.已知函数是定义在上的偶函数,当时,。(1)求的函数解析式,并用分段函数的形式给出;(2)作出函数的简图;(3)写出函数的单调区间及最值.参考答案:(1)当时,,

是偶函数

(如果通过图象直接给对解析式得2分)(2)函数的简图:

(3)单调增区间为和

单调减区间为和

当或时,有最小值-2

略22.(本题满分14分)在一个特定时段内,以点为中心的7海里以内海域被设为警戒水域.点正北55海里处有一个雷达观测站.某时刻测得一艘匀速直线行驶的船只位于点北偏东且与点相距海里的位置,经过40分钟又测得该船已行驶到点北偏东+(其中sin=,)且与点相距海里的位置C.(Ⅰ)求该船的行驶速度(单位:海里/小时);(Ⅱ)该船不改变航行方向继续行驶,判断它是否会进入警戒水域;若进入请求出经过警戒水域的时间,并说明理由.参考答案:解:(I)如图,AB=40,AC=10,由于,所以cos=

………2分由余弦定理得BC=

………4分所以船的行驶速度为(海里/小时)

……6分(II)解法一如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是B(x1,y2),C(x1,y2),BC与x轴的交点为D.由题设有,x1=y1=AB=40,

x2=ACcos,y2=ACsin所以过点B、C的直线l的斜率k=,直线l的方程为y=2x-40.………9分又点E(0,-55)到直线l的距离d=故该船会进入警戒水域.

…………12分进入警戒水域所行驶的路程为海里

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论