2023届湖南省娄底新化县联考数学九年级第一学期期末学业质量监测模拟试题含解析_第1页
2023届湖南省娄底新化县联考数学九年级第一学期期末学业质量监测模拟试题含解析_第2页
2023届湖南省娄底新化县联考数学九年级第一学期期末学业质量监测模拟试题含解析_第3页
2023届湖南省娄底新化县联考数学九年级第一学期期末学业质量监测模拟试题含解析_第4页
2023届湖南省娄底新化县联考数学九年级第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°2.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5 B.6 C.7 D.83.化简的结果是()A.2 B.4 C.2 D.44.关于x的方程有一个根是2,则另一个根等于()A.-4 B. C. D.5.某河堤横断面如图所示,堤高米,迎水坡的坡比是(坡比是坡面的铅直高度与水平宽度之比),则的长是()A.米 B.20米 C.米 D.30米6.己知的半径为,点是线段的中点,当时,点与的位置关系是()A.点在外 B.点在上 C.点在内 D.不能确定7.下图是用来证明勾股定理的图案被称为“赵爽弦图”,由四个全等的直角三角形和一个小正方形拼成的大正方形,对其对称性表述,正确的是()A.轴对称图形 B.中心对称图形C.既是轴对称图形又是中心对称图形 D.既不是轴对称图形又不是中心对称图形8.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)9.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(

)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)10.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1-x)2=315C.560(1-2x)2=315 D.560(1-x2)=31511.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A.1 B.2 C.﹣1 D.﹣212.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如果函数是二次函数,那么k的值一定是________.14.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________15.在中,,点在直线上,,点为边的中点,连接,射线交于点,则的值为________.16.一布袋里装有4个红球、5个黄球、6个黑球,这些球除颜色外其余都相同,那么从这个布袋里摸出一个黄球的概率为__________.17.如图,已知两个反比例函数和在第一象限内的图象,设点在上,轴于点交于点轴于点交于点,则四边形的面积为_______________________.18.如图,在平面直角坐标系中,点A的坐标为,反比例函数的图象经过线段OA的中点B,则k=_____.三、解答题(共78分)19.(8分)一个不透明袋子中装有2个白球,3个黄球,除颜色外其它完全相同.将球摇匀后,从中摸出一个球不放回,再随机摸出一球,两次摸到的球颜色相同的概率是______.20.(8分)如图,AB是€⊙O的直径,点C是€€⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=,求线段BE的长.21.(8分)如图,在平面直角坐标系中A点的坐标为(8,y),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)若函数y=3x与y=的图象的另一支交于点M,求三角形OMB与四边形OCDB的面积的比.22.(10分)如图1,分别是的内角的平分线,过点作,交的延长线于点.(1)求证:;(2)如图2,如果,且,求;(3)如果是锐角,且与相似,求的度数,并直接写出的值.23.(10分)解方程:(1)x(2x﹣1)+2x﹣1=0(2)3x2﹣6x﹣2=024.(10分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.25.(12分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.26.随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.2、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可.【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选C.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.3、A【解析】根据最简二次根式的定义进行化简即可.【详解】故选:A.【点睛】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键.4、B【分析】利用根与系数的关系,,由一个根为2,以及a,c的值求出另一根即可.【详解】解:∵关于x的方程有一个根是2,∴,即∴,故选:B.【点睛】此题主要考查了根与系数的关系,熟练地运用根与系数的关系可以大大降低计算量.5、A【分析】由堤高米,迎水坡AB的坡比,根据坡度的定义,即可求得AC的长.【详解】∵迎水坡AB的坡比,∴,∵堤高米,∴(米).故选A.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,掌握坡比的概念是解题的关键6、C【分析】首先根据题意求出OA,然后和半径比较大小即可.【详解】由已知,得OA=OP=4cm,∵的半径为∴OA<5∴点在内故答案为C.【点睛】此题主要考查点和圆的位置关系,解题关键是找出点到圆心的距离.7、B【分析】根据轴对称和中心对称图形的概念判断即可.【详解】“赵爽弦图”是中心对称图形,但不是轴对称图形,故选:B.【点睛】本题主要考查轴对称和中心对称,会判断轴对称图形和中心对称图形是解题的关键.8、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.9、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.10、B【解析】试题分析:根据题意,设设每次降价的百分率为x,可列方程为560(1-x)²=315.故选B11、C【解析】试题分析:∵一元二次方程x2+px﹣2=0的一个根为2,∴22+2p﹣2=0,解得p=﹣1.故选C.考点:一元二次方程的解12、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.二、填空题(每题4分,共24分)13、-1【解析】根据二次函数的定义判定即可.【详解】∵函数是二次函数,∴k2-7=2,k-1≠0解得k=-1.故答案为:-1.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.14、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.15、或【分析】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.利用平行线分线段成比例定理解答即可.【详解】分两种情况讨论:①当D在线段BC上时,如图1,过D作DH∥CE交AB于H.∵DH∥CE,∴.设BH=x,则HE=3x,∴BE=4x.∵E是AB的中点,∴AE=BE=4x.∵EM∥HD,∴.②当D在线段CB延长线上时,如图2,过B作BH∥CE交AD于H.∵DC=3DB,∴BC=2DB.∵BH∥CE,∴.设DH=x,则HM=2x.∵E是AB的中点,EM∥BH,∴,∴AM=MH=2x,∴.综上所述:的值为或.故答案为:或.【点睛】本题考查了平行线分线段成比例定理.掌握辅助线的作法是解答本题的关键.16、【分析】由于每个球被摸到的机会是均等的,故可用概率公式解答.【详解】解:∵布袋里装有4个红球、5个黄球、6个黑球,∴P(摸到黄球)=;故答案为:.【点睛】此题考查了概率公式,要明确:如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)=.17、【分析】根据反比函数比例系数k的几何意义得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面积分别减去两个三角形的面积即可得到四边形PAOB的面积.【详解】解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四边形PAOB的面积=3--=1故答案为:1.【点睛】本题考查了反比函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.18、-2【解析】由A,B是OA的中点,点B的坐标,把B的坐标代入关系式可求k的值.【详解】∵A(-4,2),O(0,0),B是OA的中点,∴点B(-2,1),代入得:∴故答案为:-2【点睛】本题考查反比例函数图象上点的坐标特征及线段中点坐标公式;根据中点坐标公式求出点B坐标,代入求k的值是本题的基本方法.三、解答题(共78分)19、【分析】依据题意先用画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【详解】解:画树状图得由树状图得,共有20种等可能的结果,其中两次摸到的球颜色相同的结果数为8,所以两次都摸到同种颜色的概率=.故答案为:【点睛】本题考查概率的概念和求法,借助列表或树状图列出所有等可能性是解题关键.20、(1)见解析;(2)见解析;(3)BE=5.【分析】(1)连接OC,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA,得到OC∥AD,根据平行线的性质得到OC⊥PD,根据切线的判定定理证明结论;(2)根据圆周角定理、三角形的外角的性质证明∠PFC=∠PCF,根据等腰三角形的判定定理证明;(3)连接AE,根据正切的定义求出BC,根据勾股定理求出AB,根据等腰直角三角形的性质计算即可.【详解】(1)证明:连接OC,∵AC平分∠DAB,∴∠DAC=∠CAB,∵OA=OC,∴∠OCA=∠CAB,∴∠DAC=∠OCA,∴OC∥AD,又AD⊥PD,∴OC⊥PD,∴PC与⊙O相切;(2)证明:∵CE平分∠ACB,∴∠ACE=∠BCE,∴,∴∠ABE=∠ECB,∵OC=OB,∴∠OCB=∠OBC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠BCP+∠OCB=90°,∴∠BCP=∠BAC,∵∠BAC=∠BEC,∴∠BCP=∠BEC,∵∠PFC=∠BEC+∠ABE,∠PCF=∠ECB+∠BCP,∴∠PFC=∠PCF,∴PC=PF;(3)解:连接AE,在Rt△ACB中,tan∠ABC=,AC=8,∴BC=6,由勾股定理得,AB=,∵,∴AE=BE,则△AEB为等腰直角三角形,∴BE=AB=5.【点睛】本题考查的是角平分线的定义、等腰三角形的性质和判定,切线的判定及勾股定理、锐角三角函数.熟练运用这些性质是解题的关键.21、y=;【解析】试题分析:(1)先根据锐角三角函数的定义,求出OA的值,然后根据勾股定理求出AB的值,然后由C点是OA的中点,求出C点的坐标,然后将C的坐标代入反比例函数y=中,即可确定反比例函数解析式;(2)先将y=3x与y=联立成方程组,求出点M的坐标,然后求出点D的坐标,然后连接BC,分别求出△OMB的面积,△OBC的面积,△BCD的面积,进而确定四边形OCDB的面积,进而可求三角形OMB与四边形OCDB的面积的比.试题解析:(1)∵A点的坐标为(8,y),∴OB=8,∵AB⊥x轴于点B,sin∠OAB=,∴,∴OA=10,由勾股定理得:AB=,∵点C是OA的中点,且在第一象限内,∴C(4,3),∵点C在反比例函数y=的图象上,∴k=12,∴反比例函数解析式为:y=;(2)将y=3x与y=联立成方程组,得:,解得:,,∵M是直线与双曲线另一支的交点,∴M(﹣2,﹣6),∵点D在AB上,∴点D的横坐标为8,∵点D在反比例函数y=的图象上,∴点D的纵坐标为,∴D(8,),∴BD=,连接BC,如图所示,∵S△MOB=•8•|﹣6|=24,S四边形OCDB=S△OBC+S△BCD=•8•3+=15,∴.考点:反比例函数与一次函数的交点问题.22、(1)证明见解析;(2);(3)当,;当,.【分析】(1)先利用角平分线的性质,得,,再利用外角、三角形内角和进行换算即可;(2)延长AD,构造平行相似,得到,再按条件进行计算;(3)利用△ABC与△ADE相似,得到,所以得到或,再利用三角函数求值.【详解】(1)如图1中∵∴,∵AD平分∴,同理得∵,∴∴(2)延长AD交BC于点F∵∴BE平分∠ABC∴∴∴∴,∵∴(3)∵△ABC与△ADE相似,∴∠ABC中必有一个内角和为90°∵∠ABC是锐角∴当时∵∴∵∴,∵分别是的内角的平分线∴∴∵∴代入解得②当时∵△ABC与△ADE相似∴∵分别是的内角的平分线∴∴此时综上所述,当,;当,【点睛】本题考查了相似三角形的综合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论