2023届安徽省安庆市桐城市数学九上期末考试试题含解析_第1页
2023届安徽省安庆市桐城市数学九上期末考试试题含解析_第2页
2023届安徽省安庆市桐城市数学九上期末考试试题含解析_第3页
2023届安徽省安庆市桐城市数学九上期末考试试题含解析_第4页
2023届安徽省安庆市桐城市数学九上期末考试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B. C. D.12.直径为1个单位长度的圆上有一点A与数轴上表示1的点重合,圆沿着数轴向左滚动一周,点A与数轴上的点B重合,则B表示的实数是()A. B. C. D.3.下列方程中是一元二次方程的是()A. B. C. D.4.下列约分正确的是()A. B. C. D.5.二次根式中x的取值范围是()A.x≥﹣2 B.x≥2 C.x≥0 D.x>﹣26.如图,反比例函数的图象上有一点A,AB平行于x轴交y轴于点B,△ABO的面积是1,则反比例函数的表达式是()A. B. C. D.7.如图,是的直径,点、、在上.若,则的度数为()A. B. C. D.8.下列方程中是关于的一元二次方程的是()A. B. C., D.9.已知抛物线经过点,,若,是关于的一元二次方程的两个根,且,,则下列结论一定正确的是()A. B. C. D.10.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.8二、填空题(每小题3分,共24分)11.如图,过圆外一点作圆的一条割线交于点,若,,且,则_______.12.比较sin30°、sin45°的大小,并用“<”连接为_____.13.已知关于x的方程有两个实数根,则实数k的取值范围为____________.14.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是________°.15.二次函数y=x2−4x+5的图象的顶点坐标为.16.已知正六边形的边长为4cm,分别以它的三个不相邻的顶点为圆心,边长为半径画弧(如图),则所得到的三条弧的长度之和为cm.(结果保留π)17.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).18.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若=,则的值为_____.三、解答题(共66分)19.(10分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)20.(6分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(-2,-2),B(-4,-1),C(-4,-4).(1)画出与△ABC关于点P(0,-2)成中心对称的△A1B1C1,并写出点A1的坐标;(2)将△ABC绕点O顺时针旋转的旋转90°后得到△A2B2C2,画出△A2B2C2,并写出点C2的坐标.21.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.22.(8分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.23.(8分)观察下列等式:第个等式为:;第个等式为:;第个等式为:;…根据等式所反映的规律,解答下列问题:(1)猜想:第个等式为_______________________________(用含的代数式表示);(2)根据你的猜想,计算:.24.(8分)文物探测队探测出某建筑物下面埋有文物,为了准确测出文物所在的深度,他们在文物上方建筑物的一侧地面上相距米的两处,用仪器测文物,探测线与地面的夹角分别是和,求该文物所在位置的深度(精确到米).25.(10分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于点D,且AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图②,求图①中A,B两点间的距离.26.(10分)如图,在平面直角坐标系中,点A的坐标为(m,m),点B的坐标为(n,﹣n),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点C,已知实数m、n(m<n)分别是方程x2﹣2x﹣3=0的两根.(1)求抛物线的解析式;(2)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD、BD①当△OPC为等腰三角形时,求点P的坐标;②求△BOD面积的最大值,并写出此时点D的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】利用概率的意义直接得出答案.【详解】连续抛掷一枚质地均匀的硬币4次,前3次的结果都是正面朝上,

他第4次抛掷这枚硬币,正面朝上的概率为:.故选:B.【点睛】本题主要考查了概率的意义,正确把握概率的定义是解题关键.2、C【分析】因为圆沿数轴向左滚动一周的长度是,再根据数轴的特点及的值即可解答.【详解】解:直径为1个单位长度的圆从原点沿数轴向左滚动一周,数轴上表示1的点与点B之间的距离为圆的周长,点B在数轴上表示1的点的左边.点B对应的数是.故选:C.【点睛】本题比较简单,考查的是数轴的特点及圆的周长公式.圆的周长公式是:.3、C【分析】根据一元二次方程的定义依次判断后即可解答.【详解】选项A,是一元一次方程,不是一元二次方程;选项B,是二元二次方程,不是一元二次方程;选项C,是一元二次方程;选项D,是分式方程,不是一元二次方程.故选C.【点睛】本题考查了一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程是解决问题的关键.4、D【分析】根据约分的运算法则,以及分式的基本性质,分别进行判断,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、,正确;故选:D.【点睛】本题考查了分式的基本性质,以及约分的运算法则,解题的关键是熟练掌握分式的基本性质进行解题.5、A【解析】根据二次根式有意义的条件即可求出x的范围.【详解】由题意可知:x+2≥0,∴x≥﹣2,故选:A.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.6、C【分析】如图,过点A作AC⊥x轴于点C,构建矩形ABOC,根据反比例函数系数k的几何意义知|k|=四边形ABOC的面积.【详解】如图,过点A作AC⊥x轴于点C.则四边形ABOC是矩形,∴S=S=1,∴|k|=S=S+S=2,∴k=2或k=−2.又∵函数图象位于第一象限,∴k>0,∴k=2.则反比函数解析式为.故选C.【点睛】此题考查反比例函数系数k的几何意义,解题关键在于掌握反比例函数的性质.7、C【分析】连接AD,BD,由圆周角定理可得∠ABD=25°,∠ADB=90°,从而可求得∠BAD=65°,再由圆的内接四边形对角互补得到∠BCD=115°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=25°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故选C【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.8、A【分析】根据一元二次方程的定义解答.【详解】A、是一元二次方程,故A正确;

B、有两个未知数,不是一元二次方程,故B错误;

C、是分式方程,不是一元二次方程,故C正确;

D、a=0时不是一元二次方程,故D错误;

故选:A.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.9、C【分析】根据a的符号分类讨论,分别画出对应的图象,然后通过图象判断m和n的符号,找到这两种情况下都正确的结论即可.【详解】解:当a>0时,如下图所示,由图可知:当<<时,y<0;当<或>时,y>0∵<0<∴m>0,n<0,此时:不能确定其符号,故A不一定成立;,故B错误;,故C正确;,故D错误.当a<0时,如下图所示,由图可知:当<<时,y>0;当<或>时,y<0∵<0<∴m<0,n>0,此时:不能确定其符号,故A不一定成立;,故B正确;,故C正确;,故D错误.综上所述:结论一定正确的是C.故选C.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的图象及性质与二次项系数的关系、分类讨论的数学思想和数形结合的数学思想是解决此题的关键.10、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【详解】∵OC⊥AB,AB=16,∴BC=AB=1.在Rt△BOC中,OB=10,BC=1,∴.故选C.二、填空题(每小题3分,共24分)11、1【分析】作OD⊥AB于D,由垂径定理得出AD=BD,由三角函数定义得出sin∠OAB=,设OD=4x,则OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性质得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【详解】作OD⊥AB于D,如图所示:则AD=BD,∵sin∠OAB=,∴设OD=4x,则OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案为:1.【点睛】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键.12、<.【解析】直接利用特殊角的三角函数值代入求出答案.【详解】解:∵sin30°=12、sin45°=22,

∴sin30°<sin45°.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.13、【分析】根据一元二次方程有两个实数根,可知,列不等式即可求出k的取值范围.【详解】∵关于x的方程有两个实数根∴解得故答案为:.【点睛】本题考查根据一元二次方程根的情况求参数,解题的关键是掌握判别式与一元二次方程根的情况之间的关系.14、【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A,连接AB,AD,∵点A,B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.故答案为100°.【点睛】此题考查圆周角定理,圆的内接四边形的性质,解题关键在于掌握其定义.15、(2,1)【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.16、8π【解析】试题分析:先求得正多边形的每一个内角,然后由弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=8π(cm);方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为8πcm.故答案为8π.考点:弧长的计算;正多边形和圆.17、<.【解析】试题解析:当时,当时,故答案为:18、.【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵BF是∠ABC的角平分线,∴∠EBC=∠ABE=∠AFB,∴AB=AF,∴,∵AD∥BC,∴△AFE∽△CBE,∴,∴;故答案为:.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.三、解答题(共66分)19、(1)35+;(2)坐板EF的宽度为()cm.【分析】(1)如图,构造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距离即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ=FH=20cm解三角形即可求解.【详解】解:(1)如图2,过C作CM⊥AB,垂足为M,又过D作DN⊥AB,垂足为N,过C作CG⊥DN,垂足为G,则∠DCG=60°,∵AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,∴∠A=∠B=30°,则在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CDsin∠DCG=50sin60°==,又GN=CM=30cm,前后车轮半径均为5cm,∴扶手前端D到地面的距离为DG+GN+5=+30+5=35+(cm).(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支点H到点C的距离为10cm,DF=20cm,∴FH=20cm,如图2,过E作EQ⊥FH,垂足为Q,设FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=,∴EF=2()=.答:坐板EF的宽度为()cm.【点睛】本题考查了解直角三角形的应用,解题的难点在于从实际问题中抽象出数学基本图形构造适当的直角三角形,难度较大.20、(1)详见解析;(2,-2);(2)详见解析;(-4,4)【分析】(1)分别得出A、B、C三点关于点P的中心对称点,然后依次连接对应点可得;(2)分别做A、B、C三点绕O点顺时针旋转90°的点,然后依次连接对应点即可.【详解】(1)△A1B1C1如下图所示.点A1的坐标为(2,-2)(2)△A2B2C2如上图所示.点C2的坐标为(-4,4).【点睛】本题考查绘制中心对称图形和绘制旋转图形,解题关键是绘制图形中的关键点的对应点.21、(1)(2,4),(0,4),(﹣1,2);(2)作图见解析;(4,﹣2),(4,0),(2,1).【分析】(1)根据中心对称图形的概念求解可得;(2)利用旋转变换的定义和性质作出对应点,再首尾顺次连接即可得.【详解】(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).【点睛】本题考查中心对称图形和旋转变换,作旋转变换时需注意旋转中心和旋转角,分清逆时针和顺时针旋转.22、小岛,间的距离为米.【分析】根据三角函数的定义解直角三角形【详解】解:在中,由题可知,∴.在中,由题可知.∵,∴.∴.答:小岛,间的距离为米.【点睛】本题考查了利用三角函数解实际问题,注意三角函数的定义,别混淆23、(1);(2)-1【分析】(1)根据已知的三个等式,可观察出每个等式左边的分母经过将加号变为减号后取相反数作为化简结果,由此规律即可得出第n个等式的表达式;(2)根据(1)中的规律,将代数式化简后计算即可得出结果.【详解】解:(1)∵∴第个等式为;(2)计算:【点睛】本题考查了数字的变化类规律,解答本题的关键是发现数字的变化特点,写出化简结果即可求出代数式的值.24、17.3米【分析】首先构建直角三角形,然后利用特殊角锐角三角函数,即可得解.【详解】过点作于,设,如图所示:在中,,则在中,,(米)(米)即米.答:该文物所在的位置在地下约17.3米处.【点睛】此题主要考查含有特殊锐角三角函数的实际应用,解题关键是构建直角三角形,即可解题.25、AB=30(mm)【解析】解:如图所示,连接AB,与CO的延长线交于点E.∵夹子是轴对称图形,对称轴是CE,且A,B为一组对称点,∴CE⊥AB,AE=EB.在Rt△AEC和Rt△ODC中,∵∠ACE=∠O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论