版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知二次函数的与的部分对应值如表:下列结论:①抛物线的开口向上;②抛物线的对称轴为直线;③当时,;④抛物线与轴的两个交点间的距离是;⑤若是抛物线上两点,则;⑥.其中正确的个数是()A. B. C. D.2.下列方程属于一元二次方程的是()A. B.C. D.3.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米4.若关于x的一元二次方程有实数根,则实数k的取值范围是()A. B. C.且 D.5.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米6.下列事件中,是随机事件的是()A.任意画两个直角三角形,这两个三角形相似 B.相似三角形的对应角相等C.⊙O的半径为5,OP=3,点P在⊙O外 D.直径所对的圆周角为直角7.如图,在中,是的直径,点是上一点,点是弧的中点,弦于点,过点的切线交的延长线于点,连接,分别交于点,连接.给出下列结论:①;②;③点是的外心;④.其中正确的是()A.①②③ B.②③④ C.①③④ D.①②③④8.如图,,是四边形的对角线,点,分别是,的中点,点,分别是,的中点,连接,,,,要使四边形为正方形,则需添加的条件是()A., B.,C., D.,9.如图,已知矩形ABCD,AB=6,BC=10,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A.6 B.7 C.8 D.910.如图,已知若的面积为,则的面积为()A. B. C. D.11.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为()A. B. C. D.12.某同学用一根长为(12+4π)cm的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA=6cm,则扇形的面积是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm2二、填空题(每题4分,共24分)13.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为___________.14.在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为_____.15.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为_____.16.若关于x的方程x2-kx+9=0(k为常数)有两个相等的实数根,则k=_____.17.抛物线的顶点坐标是__________________.18.抛物线的开口方向是_____.三、解答题(共78分)19.(8分)关于x的方程的解为正数,且关于y的不等式组有解,求符合题意的整数m.20.(8分)“五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样.规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费.某顾客刚好消费300元.(1)该顾客至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率.21.(8分)直线与双曲线只有一个交点,且与轴、轴分别交于、两点,AD垂直平分,交轴于点.(1)求直线、双曲线的解析式;(2)过点作轴的垂线交双曲线于点,求的面积.22.(10分)解方程:(1)3x1-6x-1=0;(1)(x-1)1=(1x+1)1.23.(10分)如图,一次函数和反比例函数的图象相交于两点,点的横坐标为1.(1)求的值及,两点的坐标(1)当时,求的取值范围.24.(10分)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径,高,求这个圆锥形漏斗的侧面积.25.(12分)如图,平行四边形ABCD的顶点A在y轴上,点B、C在x轴上;OA、OB长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB,BC=6;(1)写出点D的坐标;(2)若点E为x轴上一点,且S△AOE=,①求点E的坐标;②判断△AOE与△AOD是否相似并说明理由;(3)若点M是坐标系内一点,在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.26.已知二次函数的顶点坐标为,且经过点,设二次函数图象与轴交于点,求点的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】先利用待定系数法求出抛物线解析式,则可对①进行判断;求出抛物线的对称轴则可对②进行判断;利用抛物线与x轴的两个交点可对③④进行判断;根据二次函数的增减性可对⑤进行判断;根据a、b、c的具体数值可对⑥进行判断.【详解】解:由表格可知:抛物线与x轴的交点坐标为(0,0),(4,0),∴设抛物线解析式为y=ax(x﹣4),把(﹣1,5)代入得:5=a×(﹣1)×(﹣1﹣4),解得a=1,∴抛物线解析式为y=x2﹣4x,所以①正确;∵(0,0)与(4,0)关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=2,所以②正确;∵抛物线的开口向上,且与x轴交于点(0,0)、(4,0),∴当0<x<4时,y<0,所以③错误;抛物线与x轴的两个交点(0,0)与(4,0)间的距离是4,所以④正确;若A(x1,2),B(x2,3)是抛物线上两点,则,所以x1与x2的大小不能确定,所以⑤错误;∵a=1,b=-4,c=0,∴,所以⑥错误.综上,正确的个数有3个,故选:B.【点睛】本题考查了二次函数的性质、待定系数法求二次函数的解析式、抛物线与x轴的交点以及二次函数与不等式等知识,属于常见题型,熟练掌握二次函数的性质是解题的关键.2、A【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【详解】解:A、该方程符合一元二次方程的定义,符合题意;B、该方程属于二元二次方程,不符合题意;C、当a=1时,该方程不是一元二次方程,不符合题意;D、该方程不是整式方程,不是一元二次方程,不符合题意.故选:A.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=1(且a≠1).特别要注意a≠1的条件.这是在做题过程中容易忽视的知识点.3、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【点睛】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.4、C【分析】根据方程根的情况可以判定其根的判别式的取值范围,进而可以得到关于k的不等式,解得即可,同时还应注意二次项系数不能为1.【详解】∵关于x的一元二次方程有实数根,∴△=b2-4ac≥1,即:1+3k≥1,解得:,∵关于x的一元二次方程kx2-2x+1=1中k≠1,故选:C.【点睛】本题考查了一元二次方程根的判别式,解题的关键是了解根的判别式如何决定一元二次方程根的情况.5、B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴,解得:,所以解析式为:y=x2+x+,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键6、A【分析】根据相似三角形的判定定理、相似三角形的性质定理、点与圆的位置关系、圆周角定理判断即可.【详解】解:A、任意画两个直角三角形,这两个三角形相似是随机事件,符合题意;B、相似三角形的对应角相等是必然事件,故不符合题意;C、⊙O的半径为5,OP=3,点P在⊙O外是不可能事件,故不符合题意;D、直径所对的圆周角为直角是必然事件,故不符合题意;故选:A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.也考查了相似三角形的判定与性质,点与圆的位置关系,圆周角定理等知识.7、B【分析】①由于与不一定相等,根据圆周角定理可判断①;
②连接OD,利用切线的性质,可得出∠GPD=∠GDP,利用等角对等边可得出GP=GD,可判断②;
③先由垂径定理得到A为的中点,再由C为的中点,得到,根据等弧所对的圆周角相等可得出∠CAP=∠ACP,利用等角对等边可得出AP=CP,又AB为直径得到∠ACQ为直角,由等角的余角相等可得出∠PCQ=∠PQC,得出CP=PQ,即P为直角三角形ACQ斜边上的中点,即为直角三角形ACQ的外心,可判断③;
④正确.证明△APF∽△ABD,可得AP×AD=AF×AB,证明△ACF∽△ABC,可得AC2=AF×AB,证明△CAQ∽△CBA,可得AC2=CQ×CB,由此即可判断④;【详解】解:①错误,假设,则,,,显然不可能,故①错误.②正确.连接.是切线,,,,,,,,,故②正确.③正确.,,,,,,是直径,,,,,,,点是的外心.故③正确.④正确.连接.,,,,,,,,可得,,,,可得,.故④正确,故选:.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.8、A【分析】证出、、、分别是、、、的中位线,得出,,,,证出四边形为平行四边形,当时,,得出平行四边形是菱形;当时,,即,即可得出菱形是正方形.【详解】点,分别是,的中点,点,分别是,的中点,、、、分别是、、、的中位线,,,,,四边形为平行四边形,当时,,平行四边形是菱形;当时,,即,菱形是正方形;故选:.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定以及三角形中位线定理;熟练掌握三角形中位线定理是解题的关键.9、B【分析】延长AF交DC于Q点,由矩形的性质得出CD=AB=6,AB∥CD,AD∥BC,得出=1,△AEI∽△QDE,因此CQ=AB=CD=6,△AEI的面积:△QDI的面积=1:16,根据三角形的面积公式即可得出结果.【详解】延长AF交DC于Q点,如图所示:∵E,F分别是AB,BC的中点,∴AE=AB=3,BF=CF=BC=5,∵四边形ABCD是矩形,∴CD=AB=6,AB∥CD,AD∥BC,∴=1,△AEI∽△QDI,∴CQ=AB=CD=6,△AEI的面积:△QDI的面积=()2=,∵AD=10,∴△AEI中AE边上的高=2,∴△AEI的面积=×3×2=3,∵△ABF的面积=×5×6=15,∵AD∥BC,∴△BFH∽△DAH,∴==,∴△BFH的面积=×2×5=5,∴四边形BEIH的面积=△ABF的面积﹣△AEI的面积﹣△BFH的面积=15﹣3﹣5=1.故选:B.【点睛】本题考查了矩形的性质、相似三角形的判定与性质、三角形面积的计算;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.10、A【分析】根据相似三角形的性质得出,代入求出即可.【详解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面积为9,∴,∴S△ADE=1,故选:A.【点睛】本题考查了相似三角形的性质定理,能熟记相似三角形的面积比等于相似比的平方是解此题的关键.11、C【分析】根据函数关系式,求出t=1时的h的值即可.【详解】t=1s时,h=-1+2+1.5=2.5故选C.【点睛】本题考查了二次函数的应用,知道t=1时满足函数关系式是解题的关键.12、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm,半径OA=6cm,∴弧长为4πcm,∴扇形的圆心角为:=120°,∴扇形的面积为:=12πcm2,故选:A.【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.二、填空题(每题4分,共24分)13、.【解析】⊙O是△ABC的外接圆,∠BAC=60°,;因为OB、OC是⊙O的半径,所以OB=OC,所以=,在中,若⊙O的半径OC为2,OB=OC=2,在中,BC="2"=【点睛】本题考查圆周角与圆心角、弦心距,要求考生熟悉圆周角与圆心角的关系,会求弦心距和弦长14、或1.【解析】当△PQB为等腰三角形时,有两种情况,需要分类讨论:①当点P在线段AB上时,如图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【详解】解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,当点P在线段AB上时,如题图1所示:∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴即解得:∴当点P在线段AB的延长线上时,如题图2所示:∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×3=1.综上所述,当△PQB为等腰三角形时,AP的长为或1.故答案为或1.【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.15、110°【解析】试题分析:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故答案为110°.考点:圆周角定理.16、±1【分析】根据方程x2-kx+9=0有两个相等的实数根,所以根的判别式△=b2-4ac=0,即k2-4×1×9=0,然后解方程即可.【详解】∵方程x2+kx+9=0有两个相等的实数根,
∴△=0,即k2-4×1×9=0,解得k=±1.
故答案为±1.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的根判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.17、(2,0).【分析】直接利用顶点式可知顶点坐标.【详解】顶点坐标是(2,0),故答案为:(2,0).【点睛】主要考查了求抛物线顶点坐标的方法.18、向上【分析】根据二次项系数的符号即可确定答案.【详解】其二次项系数为2,且二次项系数:2>0,所以开口方向向上,故答案为:向上.【点睛】本题考查了二次函数的性质,熟知二次函数y=ax2+bx+c(a≠0)图象的开口方向与a的值有关是解题的关键.三、解答题(共78分)19、m的值是-1或1或2或3或4或5【分析】根据题意先求出方程的解与不等式组的解集,再根据题目中的要求,求出相应的m的值即可.【详解】解:解分式方程得:∵x为正数解得由不等式组有解得:整数m的值是-1或1或2或3或4或5.【点睛】本题考查分式方程的解、一元一次不等式组的整数解,解题的关键是明确题意,找出所求问题需要的条件.20、(1)70;(2)画树状图见解析,该顾客所获得购物券的金额不低于50元的概率1【解析】试题分析:(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案.试题解析:(1)则该顾客至多可得到购物券:50+20=70(元);(2)画树状图得:∵共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,∴该顾客所获得购物券的金额不低于50元的概率为:61221、(1);;(2).【分析】(1)由题意利用待定系数法求一次函数以及反比例函数解析式即可;(2)根据题意求出BE和BD的值,运用三角形面积公式即可得解.【详解】解:(1)由已知得,,∴.将点、点坐标代入,得,解得,直线解析式为;将点坐标代入得,∴反比例函数的解析式为.(2)∵E和B同横轴坐标,∴当时,即,∵,,D(1,0)∴BD=1,即为以BE为底的高,∴.【点睛】本题考查反比例函数和几何图形的综合问题,熟练掌握待定系数法求反比例函数解析式以及运用数形结合思维分析是解题的关键.22、(1)x1=1+,x1=1-;(1)x1=,x1=-3【分析】(1)利用配方法解方程即可;
(1)先移项,然后利用因式分解法解方程.【详解】(1)解:x1-1x=x1-1x+1=+1(x-1)1=x-1=±∴x1=1+,x1=1-(1)解:[(x-1)+(1x+1)][(x-1)-(1x+1)]=0(3x-1)(-x-3)=0∴x1=,x1=-3【点睛】本题考查了解一元二次方程的应用,能灵活运用各种方法解一元二次方程是解题的关键.23、(1);(1)或【分析】(1)将x=1代入求得A(1,3),将A(1,3)代入求得,解方程组得到B点的坐标为(-6,-1);
(1)反比例函数与一次函数的交点坐标即可得到结论.【详解】解:(1)将代入,得,∴.将代入,得,∴,∴,解得(舍去)或.将代入,得,∴.(1)由图可知,当时,或.【点睛】此题考查反比例函数与一次函数的交点问题,正确的理解题意是解题的关键.24、【解析】首先根据底面半径OB=3cm,高OC=4cm,求出圆锥的母线长,再利用圆锥的侧面积公式求出即可.【详解】解:根据题意,由勾股定理可知.,圆锥形漏斗的侧面积.【点睛】此题主要考查了圆锥的侧面积公式求法,正确的记忆圆锥侧面积公式是解决问题的关键.25、(1)(6,4);(2)①点E坐标或;②△AOE与△AOD相似,理由见解析;(3)存在,F1(﹣3,0);F2(3,8);;【分析】(1)求出方程x2﹣7x+12=0的两个根,OA=4,OB=3,可求点A坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工月工作计划集合十篇
- 师范生的实习报告范文合集7篇
- 主题班会演讲稿(15篇)
- 计算机维修工标准
- 管理的决策职能名词解释1决策2程序化决策3非程序化
- 2024年电力施工安全规范合作合同版B版
- 川教版(2019)小学信息技三年级上册第三单元第3节《变换造型》教学实录及反思
- 《天宫课堂》第二课观后感简短七篇
- 八年级历史下册 第一学习主题 中华人民共和国的成立和巩固 第1课 中国人民站起来了教学实录2 川教版
- 学校办公室主任述职报告【7篇】
- GB/T 43700-2024滑雪场所的运行和管理规范
- 《3-6岁儿童学习与发展指南》知识竞赛参考题库500题(含答案)
- 幼儿园园长的园里园外融合教育
- 新型电力系统简介
- 海装风机故障培训课件
- 施工安全管理体系及安全保证措施样本
- 磁异法探测海底缆线分解课件
- 304焊接工艺参数
- 交感神经相关性疼痛及其治疗通用课件
- 中小学生研学旅行 投标方案(技术方案)
- 文创产品市场营销策略
评论
0/150
提交评论