版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.中,,,,则的值是()A. B. C. D.2.某次数学纠错比赛共有道题目,每道题都答对得分,答错或不答得分,全班名同学参加了此次竞赛,他们的得分情况如下表所示:成绩(分)人数则全班名同学的成绩的中位数和众数分别是()A., B., C.,70 D.,3.已知⊙O的半径为1,点P到圆心的距离为d,若关于x的方程x-2x+d=0有实数根,则点P()A.在⊙O的内部 B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O内部4.对于一个圆柱的三种视图,小明同学求出其中两种视图的面积分别为6和10,则该圆柱第三种视图的面积为()A.6 B.10 C.4 D.6或105.如图,E是平行四边形ABCD的对角线BD上的点,连接AE并延长交BC于点F,且,则的值是()A. B. C. D.6.下列命题正确的是()A.三点确定一个圆 B.圆中平分弦的直径必垂直于弦C.矩形一定有外接圆 D.三角形的内心是三角形三条中线的交点7.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.8.的直径为,点与点的距离为,点的位置()A.在⊙O外 B.在⊙O上 C.在⊙O内 D.不能确定9.二次函数y=2x2﹣4x﹣6的最小值是()A.﹣8 B.﹣2 C.0 D.610.如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H.给出下列结论,①△ABE≌△DCF;②△DPH是等腰三角形;③;④,其中正确结论的个数是()A. B. C. D.二、填空题(每小题3分,共24分)11.在中,,则∠C的度数为____.12.如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.13.从长度为2cm、4cm、6cm、8cm的4根木棒中随机抽取一根,能与长度为3cm和5cm的木棒围成三角形的概率为_____.14.如图,双曲线与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线,已知点P坐标为(1,3),则图中阴影部分的面积为______.15.点M(3,)与点N()关于原点对称,则________.16.如图,在⊙O中,弦AB,CD相交于点P,∠A=30°,∠APD=65°,则∠B=_____.17.已知二次根式有意义,则满足条件的的最大值是______.18.方程的解是__________.三、解答题(共66分)19.(10分)如图,已知线段,于点,且,是射线上一动点,,分别是,的中点,过点,,的圆与的另一交点(点在线段上),连结,.(1)当时,求的度数;(2)求证:;(3)在点的运动过程中,当时,取四边形一边的两端点和线段上一点,若以这三点为顶点的三角形是直角三角形,且为锐角顶点,求所有满足条件的的值.20.(6分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30°方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75°方向,求此时海监船与黄岩岛P的距离BP的长.(结果精确到0.1海里,参考数据:tan75°≈3.732,sin75°≈0.966,sin15°≈0.259,≈1.414,≈1.732)21.(6分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2017年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?22.(8分)已知关于x的一元二次方程(1)当m取何值时,这个方程有两个不相等的实根?(2)若方程的两根都是正数,求m的取值范围;(3)设是这个方程的两个实根,且,求m的值.23.(8分)某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:(1)在这个调查中,样本容量是______________;平均成绩是_________________;(2)请补全成绩在这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年平均增长率.24.(8分)如图,在ABC中,AC=BC,∠ACB=120°,点D是AB边上一点,连接CD,以CD为边作等边CDE.(1)如图1,若∠CDB=45°,AB=6,求等边CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG⊥AC于点G.①求证:CF⊥DF;②如图3,将CFD沿CF翻折得CF,连接B,直接写出的最小值.25.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=AC.在平面内任取一点D,连结AD(AD<AB),将线段AD绕点A逆时针旋转90°,得到线段AE,连结DE,CE,BD.(1)请根据题意补全图1;(2)猜测BD和CE的数量关系并证明;(3)作射线BD,CE交于点P,把△ADE绕点A旋转,当∠EAC=90°,AB=2,AD=1时,补全图形,直接写出PB的长.26.(10分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.(1)在图1中画一条格点线段CD将AB平分.(2)在图2中画一条格点线段EF.将AB分为1:1.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据勾股定理求出BC的长度,再根据cos函数的定义求解,即可得出答案.【详解】∵AC=,AB=4,∠C=90°∴∴故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.2、A【分析】根据中位数的定义把这组数据从小到大排列,求出最中间2个数的平均数;根据众数的定义找出出现次数最多的数即可.【详解】把这组数据从小到大排列,最中间2个数的平均数是(70+80)÷2=75;
则中位数是75;
70出现了13次,出现的次数最多,则众数是70;
故选:A.【点睛】本题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数,注意众数不止一个.3、D【分析】先根据条件x
2
-2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x
2
-2x+d=0有实根,∴根的判别式△=(-2)
2
-4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r时,点在圆内.4、D【分析】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形.【详解】一个圆柱的三视图是圆和长方形,所以另外一种视图也是同样的长方形,如果视图是长方形的面积是6,另外一种视图的面积也是6,如果视图是长方形的面积是10,另外一种视图的面积也是10.故选:D【点睛】考核知识点:三视图.理解圆柱体三视图特点是关键.5、A【分析】由BF∥AD,可得,再借助平行四边形的性质把AD转化为BC即可.【详解】∵四边形ABCD是平行四边形,∴AD=BC,∵,∴.∵BF∥AD,∴=.故选A【点睛】本题主要考查平行四边形的性质和平行线截线段成比例定理,掌握平行线截线段成比例定理是解题的关键.6、C【分析】根据确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,进行判断即可.【详解】∵不在一条直线上的三点确定一个圆,∴A错误;∵圆中平分弦(不是直径)的直径必垂直于弦,∴B错误;∵矩形一定有外接圆,∴C正确;∵三角形的内心是三角形三条角平分线的交点,∴D错误;故选:C.【点睛】本题主要考查真假命题的判断,掌握确定圆的条件、垂径定理、矩形的性质定理和三角形内心的定义,是解题的关键.7、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【点睛】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.8、A【分析】由⊙O的直径为15cm,O点与P点的距离为8cm,根据点与圆心的距离与半径的大小关系,即可求得答案.【详解】∵⊙O的直径为15cm,∴⊙O的半径为7.5cm,∵O点与P点的距离为8cm,∴点P在⊙O外.故选A.【点睛】此题考查了点与圆的位置关系.注意点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.9、A【分析】将函数的解析式化成顶点式,再根据二次函数的图象与性质即可得.【详解】因此,二次函数的图象特点为:开口向上,当时,y随x的增大而减小;当时,y随x的增大而增大则当时,二次函数取得最小值,最小值为.故选:A.【点睛】本题考查了二次函数的图象与性质,熟记函数的图象特征与性质是解题关键.10、A【分析】①利用等边三角形的性质以及正方形的性质得出∠ABE=∠DCF=30°,再直接利用全等三角形的判定方法得出答案;
②利用等边三角形的性质结合正方形的性质得出∠DHP=∠BHC=75°,进而得出答案;
③利用相似三角形的判定与性质结合锐角三角函数关系得出答案;
④根据三角形面积计算公式,结合图形得到△BPD的面积=△BCP的面积+△CDP面积-△BCD的面积,得出答案.【详解】∵△BPC是等边三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
在正方形ABCD中,
∵AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
在△ABE与△CDF中,,
∴△ABE≌△DCF,故①正确;∵PC=BC=DC,∠PCD=30°,
∴∠CPD=75°,
∵∠DBC=45°,∠BCF=60°,
∴∠DHP=∠BHC=18075°,
∴PD=DH,
∴△DPH是等腰三角形,故②正确;
设PF=x,PC=y,则DC=AB=PC=y,
∵∠FCD=30°,∴即,整理得:解得:,则,故③正确;如图,过P作PM⊥CD,PN⊥BC,
设正方形ABCD的边长是4,∵△BPC为正三角形,
∴∠PBC=∠PCB=60°,PB=PC=BC=CD=4,
∴∠PCD=30°,∴,,
S△BPD=S四边形PBCD-S△BCD=S△PBC+S△PDC-S△BCD,∴,故④正确;故正确的有4个,
故选:A.【点睛】本题考查了正方形的性质以及全等三角形的判定等知识,解答此题的关键是作出辅助线,利用锐角三角函数的定义表示出出FE及PC的长是解题关键.二、填空题(每小题3分,共24分)11、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得.【详解】解:∵∴∴∴∴.故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键.12、16【分析】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.【详解】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE为等边三角形,∴AE=AC=8,CF=AC=4,则四边形ABCD的面积=△CAB的面积=×8×4=16,故答案为:16.【点睛】考核知识点:等边三角形判定和性质,三角函数.作辅助线,构造直角三角形是关键.13、【分析】根据三角形的三边关系得出第三根木棒长度的取值范围,再根据概率公式即可得出答案.【详解】∵两根木棒的长分别是3cm和5cm,∴第三根木棒的长度大于2cm且小于8cm,∴能围成三角形的是:4cm、6cm的木棒,∴能围成三角形的概率是:,故答案为.【点睛】本题主要考查三角形的三边关系和概率公式,求出三角形的第三边长的取值范围,是解题的关键.14、1.【详解】解:∵⊙O在第一象限关于y=x对称,也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=1.故答案为:115、-6【分析】根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,列方程求解即可.【详解】解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴b+3=0,a-1+4=0,即:a=﹣3且b=﹣3,∴a+b=﹣6【点睛】本题考查关于原点对称的点的坐标,掌握坐标变化规律是本题的解题关键.16、35°【分析】先根据三角形外角性质求出∠C的度数,然后根据圆周角定理得到∠B的度数.【详解】解:∵∠APD=∠C+∠A,∴∠C=65°﹣30°=35°,∴∠B=∠C=35°.故答案为35°.【点睛】本题主要考查的是三角形的外角性质以及圆周角定理,这是一道综合性几何题,掌握三角形的外角性质以及圆周角定理是解题关键.17、【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可求出x的最大值【详解】∵二次根式有意义;∴3-4x≥0,解得x≤,∴x的最大值为;故答案为.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.18、【分析】先通过移项将等号右边多项式移到左边,再利用提公因式法因式分解,即可得出方程的根.【详解】解:移项得:提公因式得:解得:;故答案为:.【点睛】本题考查一元二次方程因式分解的解法.在解一元二次方程的时候,一定要先观察方程的形式,如果遇到了相同的因式,先将他们移到方程等号的一侧,看能否利用提公因式解方程,观察以及积累是快速解题的关键.三、解答题(共66分)19、(1)75°;(2)证明见解析;(3)或或.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数;(2)连接MD,根据MD为△PAB的中位线,可得∠MDB=∠APB,再根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出△ABC∽△PBA,得出答案即可;(3)记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR=,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ=90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ的值.【详解】解:(1)∵MN⊥AB,AM=BM,∴PA=PB,∴∠PAB=∠B,∵∠APB=30°,∴∠B=75°,(2)如图1,连接MD,∵MD为△PAB的中位线,∴MD∥AP,∴∠MDB=∠APB,∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°-∠APB-∠B,∠ACB=180°-∠BAC-∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB,由(1)可知PA=PB,∴△ABC∽△PBA,∴,∴AB2=BC•PB;(3)如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∴RC=RP,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4-PR)2=22+PR2,∴PR=,∴MR=,(一)当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;(二)如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;(三)如图4,当∠QDC=90°时,∵BM=1,MP=4,∴BP=,∴DP=BP=,∵cos∠MPB=,∴PQ=,∴MQ=;(四)如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或.【点睛】此题主要考查了圆的综合题、等腰三角形的性质、三角形中位线定理,勾股定理,圆周角定理的综合应用,解决问题的关键是作辅助线构造直角三角形,运用旋转的性质以及含30°角的直角三角形的性质进行计算求解,解题时注意分类思想的运用.20、28.3海里【分析】过B作BD⊥AP于D,由已知条件求出AB=40,∠P=45°,在Rt△ABD中求出,在Rt△BDP中求出PB即可.【详解】解:过B作BD⊥AP于D,由已知条件得:AB=20×2=40海里,∠P=75°-30°=45°,在Rt△ABD中,∵AB=40,∠A=30°,∴海里,在Rt△BDP中,∵∠P=45°,∴(海里).答:此时海监船与黄岩岛P的距离BP的长约为28.3海里.【点睛】此题主要考查解直角三角形的应用-方向角问题,根据已知得出△PDB为等腰直角三角形是解题关键.21、(1)20%;(2)①10;②不能.【解析】试题分析:(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+11.1.结合函数图象的性质进行解答即可.试题解析:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.61,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤10,即A型健身器材最多可购买10套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+11.1.∵﹣0.1<0,∴y随m的增大而减小,∴m=10时,y最小.∵m=10时,y最小值=﹣01×10+11.1=10.1(万元).又∵10万元<10.1万元,∴该计划支出不能满足养护的需要.考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用.22、(1);(2);(3)m无解..【分析】(1)由根的判别式得出不等式,求出不等式的解集即可;(2)由根与系数的关系得出不等式,求出不等式的解集即可;(3)由根与系数的关系得出x1+x2=2,x1x2=m-1,将变形后代入,即可求出答案.【详解】解:(1)∵这个方程有两个不相等的实根∴,即解得.(2)由一元二次方程根与系数的关系可得:,,∵方程的两根都是正数∴,即∴又∵∴m的取值范围为(3)∵∴即,将,代入可得:,解得.而,所以m=4不符合题意,故m无解.【点睛】本题考查了由一元二次方程根的情况求参数,根与系数的关系,熟练掌握根的情况与△之间的关系与韦达定理是关键.23、(1),分;(2)见解析;(3).【分析】(1)根据样本容量的定义和平均数的求法答题即可;(2)计算出21.5至24.5这一组的频数后,再补全分布直方图;(3)设年平均增长率为,列出一元二次方程求解即可.【详解】(1)样本容量:;总成绩平均成绩分(2)∵组别人数人∴补全频数分布直方图如下:(3)设年平均增长率为,由题意得解得,(不符合题意,舍去).两年的年平均增长率为答:该校学生体育成绩的年平均增长率为10%.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必需认真观察、分析、研究统计图,才能作出正确的判断和解决问题,同时还考查了一元二次方程的应用.24、(1);(2)①证明见解析;②.【分析】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=3,CH==,由∠CDB=45°,可得CD=CH=;(2)①延长BC到N,使CN=BC,由“SAS”可证CEN≌CDA,可得EN=AD,∠N=∠A=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证EFD≌BF,可得B=DE,则当CD取最小值时,有最小值,即可求解.【详解】解:(1)如图1,过点C作CH⊥AB于点H,∵AC=BC,∠ACB=120°,CH⊥AB,∴∠A=∠B=30°,AH=BH=3,在RtBCH中,tan∠B=,∴tan30°=∴CH==,∵∠CDH=45°,CH⊥AB,∴∠CDH=∠DCH=45°,∴DH=CH=,CD=CH=;(2)①如图2,延长BC到N,使CN=BC,∵AC=BC,∠ACB=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工程项目员工聘用协议样本版
- 社区建设规划计划
- 二零二四年度企业综合网络安全维护合同2篇
- 戏剧表演舞蹈演员聘请合同
- 2024年古典家具装配合同3篇
- 二零二四年度国际珠宝首饰进出口贸易合同2篇
- 国际出企业办公室租赁合同
- 城市广场足球场施工合同
- 亲子教育董事长聘任协议
- 2024年度餐饮服务合同及菜品质量协议3篇
- 动词的一般过去时was,were练习
- 《听闻远方有你》简谱
- 南昌市城镇居民基本医疗保险特殊病种门诊申请审核表
- ZC25-3*500兆欧表的使用方法 一、兆欧表的作用 手摇兆欧表又称绝缘
- 施工排架安全验收表
- 中国传统文化 英文(课堂PPT)
- 水泥稳定土类基层施工工艺标准(路拌法与厂拌法)
- 模具常用语中英文对照
- 全自动血液细菌培养分析仪校准规范(实验报告)
- 填涂答题卡注意事项PPT精品文档
- 中医儿科病历
评论
0/150
提交评论