版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20° B.35° C.40° D.55°2.如果一个一元二次方程的根是x1=x2=1,那么这个方程是A.(x+1)2=0B.(x-1)2=0C.x2=1D.x2+1=03.图中的两个梯形成中心对称,点P的对称点是()A.点A B.点B C.点C D.点D4.下列说法中不正确的是()A.相似多边形对应边的比等于相似比B.相似多边形对应角平线的比等于相似比C.相似多边形周长的比等于相似比D.相似多边形面积的比等于相似比5.中国在夏代就出现了相当于砝码的“权”,此后的多年间,不同朝代有不同形状和材质的“权”作为衡量的量具.下面是一个“”形增砣砝码,其俯视图如下图所示,则其主视图为()A. B. C. D.6.如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且∠D=40°,则∠PCA等于()A.50° B.60° C.65° D.75°7.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米 B.2分米 C.3分米 D.3分米8.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点9.用一个圆心角为120°,半径为6cm的扇形做成一个圆锥的侧面,这个圆锥的高为()A. B. C. D.10.下列图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.11.如图,两条直线被三条平行线所截,若,则()A. B. C. D.12.如图,一根6m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A在草地上的最大活动区域面积是()A.9πm2 B.πm2 C.15πm2 D.πm2二、填空题(每题4分,共24分)13.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).14.如图,在△ABC中,∠BAC=75°,以点A为旋转中心,将△ABC绕点A逆时针旋转,得△AB'C',连接BB',若BB'∥AC',则∠BAC′的度数是______________.15.方程的解是________.16.两同学玩扔纸团游戏,在操场上固定了如下图所示的矩形纸板,E为AD中点,且∠ABD=60°,每次纸团均落在纸板上,则纸团击中阴影区域的概率是________.17.函数和在第一象限内的图象如图,点是的图象上一动点,轴于点,交的图象于点;轴于点,交的图象于点,则四边形的面积为______.18.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点为位似中心,将△ABC缩小,使变换得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应点的坐标为____.三、解答题(共78分)19.(8分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与边BC交于点D,与边AC交于点E,连接AD,且AD平分∠BAC.(1)试判断BC与⊙O的位置关系,并说明理由;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).20.(8分)如图,要设计一幅宽为20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条宽度相等,如果要使余下的图案面积为504cm2,彩条的宽应是多少cm.21.(8分)如图1:在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),试探索AD,BD,CD之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE.继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;(2)如图2,在Rt△ABC中,AB=AC,D为△ABC外的一点,且∠ADC=45°,线段AD,BD,CD之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB是⊙O的直径,点C,D是⊙O上的点,且∠ADC=45°.①若AD=6,BD=8,求弦CD的长为;②若AD+BD=14,求的最大值,并求出此时⊙O的半径.22.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.23.(10分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.24.(10分)周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示:(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P随x的变化规律,请直接写出P与x的函数关系式及自变量x的取值范围;(3)求出销售额W在哪一天达到最大,最大销售额是多少元?25.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:①旋转角为度;②点B2的坐标为.26.如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,求∠A的正弦值、余弦值和正切值.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题解析:∵圆内接四边形ABCD的边AB过圆心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵过点C的切线与边AD所在直线垂直于点M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故选A.2、B【分析】分别求出四个选项中每一个方程的根,即可判断求解.【详解】A、(x+1)2=0的根是:x1=x2=-1,不符合题意;B、(x-1)2=0的根是:x1=x2=-1,符合题意;C、x2=1的根是:x1=1,x2=-1,不符合题意;D、x2+1=0没有实数根,不符合题意;故选B.3、C【分析】根据两个中心对称图形的性质即可解答.关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分;关于中心对称的两个图形能够完全重合.【详解】解:根据中心对称的性质:
图中的两个梯形成中心对称,点P的对称点是点C.故选:C【点睛】本题考查中心对称的性质,属于基础题,掌握其基本的性质是解答此题的关键.4、D【分析】根据相似多边形的性质判断即可.【详解】若两个多边形相似可知:①相似多边形对应边的比等于相似比;②相似多边形对应角平线的比等于相似比③相似多边形周长的比等于相似比,④相似多边形面积的比等于相似比的平方,故选D.【点睛】本题考查了相似多边形的性质,即相似多边形对应边的比相等、应面积的比等于相似比的平方.5、A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】从正面看中间的矩形的左右两边是虚的直线,故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6、C【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.7、B【分析】连接OC,作OE⊥CD,根据垂径定理和勾股定理求解即可.【详解】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故选:B.【点睛】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.8、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9、B【分析】根据题意直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.【详解】解:设此圆锥的底面半径为r,由题意得:,解得r=2cm,故这个圆锥的高为:.故选:B.【点睛】本题主要考查圆锥的计算,熟练掌握圆锥的性质并正确得出圆锥的半径是解题关键.10、A【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意.故选:A.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,,即,解得,,,故选:.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.12、B【解析】小羊的最大活动区域是一个半径为6、圆心角为90°和一个半径为2、圆心角为60°的小扇形的面积和.所以根据扇形的面积公式即可求得小羊的最大活动范围.【详解】大扇形的圆心角是90度,半径是6,如图,所以面积==9πm2;小扇形的圆心角是180°-120°=60°,半径是2m,则面积=π(m2),则小羊A在草地上的最大活动区域面积=9π+π=π(m2).故选B.【点睛】本题考查了扇形的面积的计算,本题的关键是从图中找到小羊的活动区域是由哪几个图形组成的,然后分别计算即可.二、填空题(每题4分,共24分)13、5﹣5【分析】根据黄金分割比的定义计算即可.【详解】根据黄金分割比,有故答案为:.【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键.14、105°【分析】根据旋转的性质得AB′=AB,∠B′AB=∠C′AC,再根据等腰三角形的性质得∠AB′B=∠ABB′,然后根据平行线的性质得到∠AB′B=∠C′AB′=75°,于是得到结论.【详解】解:∵△ABC绕点A逆时针旋转到△AB′C′,
∴AB′=AB,∠B′AB=∠C′AC,∠C′AB′=∠CAB=75°,
∴△AB′B是等腰三角形,∴∠AB′B=∠ABB′
∵BB'∥AC,
∴∠AB′B=∠C′AB′=75°,
∴∠C′AC=∠B′AB=180°-2×75°=30°,
∴∠BAC′=∠C′AC+∠BAC=30°+75°=105°,故答案为:105°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了平行线的性质.15、.【分析】方程去分母转化为整式方程,求出整式方程的解得到的值,经检验得到分式方程的解.【详解】去分母得:,解得:,经检验是的根,所以,原方程的解是:.故答案是为:【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16、【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据E为AD中点得出S△ODES△OAD,进而求解即可.【详解】∵ABCD是矩形,∴S△AOD=S△AOB=S△BOC=S△CODS矩形纸板ABCD.又∵E为AD中点,∴S△ODES△OAD,∴S△ODES矩形纸板ABCD,∴纸团击中阴影区域的概率是.故答案为:.【点睛】本题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.17、3【解析】根据反比例函数系数k的几何意义可分别求得△OBD、△OAC、矩形PDOC的面积,据此可求出四边形PAOB的面积.【详解】解:如图,
∵A、B是反比函数上的点,
∴S△OBD=S△OAC=,∵P是反比例函数上的点,
∴S矩形PDOC=4,
∴S四边形PAOB=S矩形PDOC-S△ODB--S△OAC=4--=3,故答案是:3.【点睛】本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.18、(1,)或(-1,-)【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.本题中k=1或−1.【详解】解:∵两个图形的位似比是1:(−)或1:,AC的中点是(4,3),∴对应点是(1,)或(−1,−).【点睛】本题主要考查位似变换中对应点的坐标的变化规律.三、解答题(共78分)19、(1)BC与⊙O相切,理由见解析;(2).【解析】试题分析:(1)连接推出根据切线的判定推出即可;
(2)连接求出阴影部分的面积=扇形的面积,求出扇形的面积即可.试题解析:(1)BC与相切,理由:连接OD,∵AD平分∠BAC,∴∠BAD=∠DAC,∵AO=DO,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴OD⊥BC,∴BC与相切;(2)连接OE,ED,∴△OAE为等边三角形,又∴阴影部分的面积=S扇形ODE20、1cm.【分析】设每个彩条的宽度为xcm,根据剩余面积为504cm2,建立方程求出其解即可.【详解】设每个彩条的宽度为xcm,由题意,得(30﹣2x)(20﹣2x)=504,解得:x1=24(舍去),x2=1.答:每个彩条的宽度为1cm.【点睛】本题考查一元二次方程的应用,解题的关键是根据剩余面积=总面积-彩条面积列出方程.21、(1)CD2+BD2=2AD2,见解析;(2)BD2=CD2+2AD2,见解析;(3)①7,②最大值为,半径为【分析】(1)先判断出∠BAD=CAE,进而得出△ABD≌△ACE,得出BD=CE,∠B=∠ACE,再根据勾股定理得出DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,即可得出结论;(2)同(1)的方法得,ABD≌△ACE(SAS),得出BD=CE,再用勾股定理的出DE2=2AD2,CE2=CD2+DE2=CD2+2AD2,即可得出结论;(3)先根据勾股定理的出DE2=CD2+CE2=2CD2,再判断出△ACE≌△BCD(SAS),得出AE=BD,①将AD=6,BD=8代入DE2=2CD2中,即可得出结论;②先求出CD=7,再将AD+BD=14,CD=7代入,化简得出﹣(AD﹣)2+,进而求出AD,最后用勾股定理求出AB即可得出结论.【详解】解:(1)CD2+BD2=2AD2,理由:由旋转知,AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∴∠ACE=45°,∴∠DCE=∠ACB+∠ACE=90°,根据勾股定理得,DE2=CD2+CE2=CD2+BD2,在Rt△ADE中,DE2=AD2+AE2=2AD2,∴CD2+BD2=2AD2;(2)BD2=CD2+2AD2,理由:如图2,将线段AD绕点A逆时针旋转90°,得到线段AE,连接EC,DE,同(1)的方法得,ABD≌△ACE(SAS),∴BD=CE,在Rt△ADE中,AD=AE,∴∠ADE=45°,∴DE2=2AD2,∵∠ADC=45°,∴∠CDE=∠ADC+∠ADE=90°,根据勾股定理得,CE2=CD2+DE2=CD2+2AD2,即:BD2=CD2+2AD2;(3)如图3,过点C作CE⊥CD交DA的延长线于E,∴∠DCE=90°,∵∠ADC=45°,∴∠E=90°﹣∠ADC=45°=∠ADC,∴CD=CE,根据勾股定理得,DE2=CD2+CE2=2CD2,连接AC,BC,∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ADC=45°,∴∠BDC=45°=∠ADC,∴AC=BC,∵∠DCE=∠ACB=90°,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,①AD=6,BD=8,∴DE=AD+AE=AD+BD=14,∴2CD2=142,∴CD=7,故答案为7;②∵AD+BD=14,∴CD=7,∴=AD•(BD+×7)=AD•(BD+7)=AD•BD+7AD=AD(14﹣AD)+7AD=﹣AD2+21AD=﹣(AD﹣)2+,∴当AD=时,的最大值为,∵AD+BD=14,∴BD=14﹣=,在Rt△ABD中,根据勾股定理得,AB=,∴⊙O的半径为OA=AB=.【点睛】本题考查圆与三角形的结合,关键在于熟记圆的性质和三角形的性质.22、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,设BC中垂线的表达式为:y=﹣x+m,将点(﹣,﹣)代入上式并解得:直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立①⑤并解得:x=﹣或﹣4(舍去﹣4),故点P(﹣,﹣);当点P(P′)在直线BC上方时,∵∠PBC=∠BCD,∴BP′∥CD,则直线BP′的表达式为:y=2x+s,将点B坐标代入上式并解得:s=5,即直线BP′的表达式为:y=2x+5…⑥,联立①⑥并解得:x=0或﹣4(舍去﹣4),故点P(0,5);故点P的坐标为P(﹣,﹣)或(0,5).【点睛】本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23、米.【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度VIP会员高端健身与美容服务协议3篇
- 二零二四天津住宅装修工程安全文明施工合同3篇
- 2024版牛肉进口商业交易协议细则版
- 2024老旧仓库创意产业园区开发协议
- 2025年度承兑汇票担保与银行间市场利率衍生品合同3篇
- 二零二五版9A文条款离婚协议律师代理服务合同3篇
- 基于2025年度需求的全息标识牌制作与安装合同3篇
- 二零二五年高端葡萄酒进口与代理合同2篇
- 2025年度林木种质资源保护与利用合同范本4篇
- 2025年度绿色建筑节能改造分包合同低碳环保2篇
- 国家自然科学基金项目申请书
- 电力电缆故障分析报告
- 中国电信网络资源管理系统介绍
- 2024年浙江首考高考选考技术试卷试题真题(答案详解)
- 《品牌形象设计》课件
- 仓库管理基础知识培训课件1
- 药品的收货与验收培训课件
- GH-T 1388-2022 脱水大蒜标准规范
- 高中英语人教版必修第一二册语境记单词清单
- 政府机关保洁服务投标方案(技术方案)
- HIV感染者合并慢性肾病的治疗指南
评论
0/150
提交评论