2022年江苏省无锡市省锡中学实验学校数学九上期末监测模拟试题含解析_第1页
2022年江苏省无锡市省锡中学实验学校数学九上期末监测模拟试题含解析_第2页
2022年江苏省无锡市省锡中学实验学校数学九上期末监测模拟试题含解析_第3页
2022年江苏省无锡市省锡中学实验学校数学九上期末监测模拟试题含解析_第4页
2022年江苏省无锡市省锡中学实验学校数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知反比例函数,下列结论正确的是()A.图象在第二、四象限 B.当时,函数值随的增大而增大C.图象经过点 D.图象与轴的交点为2.现有两组相同的牌,每组三张且大小一样,三张牌的牌面数字分别是1、2、3,从每组牌中各摸出一张牌.两张牌的牌面数字之和等于4的概率是()A. B. C. D.3.若.则下列式子正确的是()A. B. C. D.4.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④5.方程(m﹣1)x2﹣2mx+m﹣1=0中,当m取什么范围内的值时,方程有两个不相等的实数根?()A.m> B.m>且m≠1 C.m< D.m≠16.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是()A.①③④ B.②③④ C.①②③ D.①②④7.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为()A.4或5 B.4或7 C.4或5或7 D.4或7或98.在下列四种图形变换中,如图图案包含的变换是()A.平移、旋转和轴对称 B.轴对称和平移C.平移和旋转 D.旋转和轴对称9.已知、是一元二次方程的两个实数根,则的值为()A.-1 B.0 C.1 D.210.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4) B.(3,3) C.(3,1) D.(4,1)二、填空题(每小题3分,共24分)11.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.12.已知二次函数的图象开口向下,且其图象顶点位于第一象限内,请写出一个满足上述条件的二次函数解析式为_____(表示为y=a(x+m)2+k的形式).13.如图,已知二次函数的图象与轴交于两点(点在点的左侧),与轴交于点为该二次函数在第一象限内的一点,连接,交于点,则的最大值为__________.14.如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间为_________________15.若两个相似三角形的面积之比为1:4,则它们对应角的角平分线之比为___.16.如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为______米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为_____.18.一个三角形的三边之比为,与它相似的三角形的周长为,则与它相似的三角形的最长边为____________.三、解答题(共66分)19.(10分)已知关于的方程.(1)求证:无论为何值,该方程都有两个不相等的实数根;(2)若该方程的一个根为-1,则另一个根为.20.(6分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.21.(6分)解方程:x2-4x-7=0.22.(8分)如图,在平面直角坐标系xOy中,A(3,4),B(0,﹣1),C(4,0).(1)以点B为中心,把△ABC逆时针旋转90°,画出旋转后的图形;(2)在(1)中的条件下,①点C经过的路径弧的长为(结果保留π);②写出点A'的坐标为.23.(8分)对于平面直角坐标系中的两个图形K1和K2,给出如下定义:点G为图形K1上任意一点,点H为K2图形上任意一点,如果G,H两点间的距离有最小值,则称这个最小值为图形K1和K2的“近距离”。如图1,已知△ABC,A(-1,-8),B(9,2),C(-1,2),边长为的正方形PQMN,对角线NQ平行于x轴或落在x轴上.(1)填空:①原点O与线段BC的“近距离”为;②如图1,正方形PQMN在△ABC内,中心O’坐标为(m,0),若正方形PQMN与△ABC的边界的“近距离”为1,则m的取值范围为;(2)已知抛物线C:,且-1≤x≤9,若抛物线C与△ABC的“近距离”为1,求a的值;(3)如图2,已知点D为线段AB上一点,且D(5,-2),将△ABC绕点A顺时针旋转α(0º<α≤180º),将旋转中的△ABC记为△AB’C’,连接DB’,点E为DB’的中点,当正方形PQMN中心O’坐标为(5,-6),直接写出在整个旋转过程中点E运动形成的图形与正方形PQMN的“近距离”.24.(8分)解方程:;25.(10分)在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为,点A的坐标为,点B的坐标为;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.26.(10分)如图,在△ABC中,∠ACB=90º,∠ABC=45º,点O是AB的中点,过A、C两点向经过点O的直线作垂线,垂足分别为E、F.(1)如图①,求证:EF=AE+CF.(2)如图②,图③,线段EF、AE、CF之间又有怎样的数量关系?请直接写出你的猜想.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误图像在第一、三象限B错误当时,函数值y随x的增大而减小C正确D错误反比例函数x≠0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题的关键.2、B【分析】画树状图列出所有情况,看数字之和等于4的情况数占总情况数的多少即可.【详解】画树状图得:则共有9种等可能的结果,其中两张牌的牌面数字之和等于4的有3种结果,∴两张牌的牌面数字之和等于4的概率为=,故选:B.【点睛】本题考查列表法和树状图法,解题的关键是可以不重复不遗漏的列出所有可能的结果.3、A【分析】直接利用比例的性质分别判断即可得出答案.【详解】∵2x-7y=0,∴2x=7y.A.,则2x=7y,故此选项正确;B.,则xy=14,故此选项错误;C.,则2y=7x,故此选项错误;D.,则7x=2y,故此选项错误.故选A.【点睛】本题考查了比例的性质,正确将比例式变形是解题的关键.4、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.5、B【分析】由题意可知原方程的根的判别式△>0,由此可得关于m的不等式,求出不等式的解集后再结合方程的二次项系数不为0即可求出答案.【详解】解:由题意可知:△=4m2﹣4(m﹣1)2>0,解得:∴m>,∵m﹣1≠0,∴m≠1,∴m的范围是:m>且m≠1.故选:B.【点睛】本题考查了一元二次方程的根的判别式和一元一次不等式的解法等知识,属于基本题型,熟练掌握一元二次方程的根的判别式与方程根的个数的关系是解题关键.6、D【分析】为BC,AC中点,可得由于可得;可证故①正确.②由于则可证,故②正确.设,可得可判断③错,④正确.【详解】解:①∵为BC,AC中点,;故①正确.②,故②正确.③④设,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.7、D【解析】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.【详解】在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,∴AB=2BC=8cm,∵D为BC中点,∴BD=2cm,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,当∠EDB=90°时,则有AC∥ED,∵D为BC中点,∴E为AB中点,此时AE=4cm,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故选:D.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.8、D【分析】根据图形的形状沿中间的竖线折叠,两部分可重合,里外各一个顺时针旋转8次,可得答案.【详解】解:图形的形状沿中间的竖线折叠,两部分可重合,得轴对称.里外各一个顺时针旋转8次,得旋转.故选:D.【点睛】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,认真判断.9、C【分析】根据根与系数的关系即可求出的值.【详解】解:∵、是一元二次方程的两个实数根∴故选C.【点睛】此题考查的是根与系数的关系,掌握一元二次方程的两根之和=是解决此题的关键.10、A【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.二、填空题(每小题3分,共24分)11、1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.12、y=﹣(x﹣1)2+1(答案不唯一)【解析】因为二次函数的顶点坐标为:(-m,k),根据题意图象的顶点位于第一象限,所以可得:m<0,k>0,因此满足m<0,k>0的点即可,故答案为:(答案不唯一).13、【分析】由抛物线的解析式易求出点A、B、C的坐标,然后利用待定系数法求出直线BC的解析式,过点P作PQ∥x轴交直线BC于点Q,则△PQK∽△ABK,可得,而AB易求,这样将求的最大值转化为求PQ的最大值,可设点P的横坐标为m,注意到P、Q的纵坐标相等,则可用含m的代数式表示出点Q的横坐标,于是PQ可用含m的代数式表示,然后利用二次函数的性质即可求解.【详解】解:对二次函数,令x=0,则y=3,令y=0,则,解得:,∴C(0,3),A(-1,0),B(4,0),设直线BC的解析式为:,把B、C两点代入得:,解得:,∴直线BC的解析式为:,过点P作PQ∥x轴交直线BC于点Q,如图,则△PQK∽△ABK,∴,设P(m,),∵P、Q的纵坐标相等,∴当时,,解得:,∴,又∵AB=5,∴.∴当m=2时,的最大值为.故答案为:.【点睛】本题考查了二次函数与坐标轴的交点、二次函数的性质和二次函数图象上点的坐标特征、待定系数法求函数的解析式、相似三角形的判定和性质等知识,难度较大,属于填空题中的压轴题,解题的关键是利用相似三角形的判定和性质将所求的最大值转化为求PQ的最大值、熟练掌握二次函数的性质.14、秒或1秒【分析】此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可【详解】解:(1)当△APQ∽△ABC时,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.,则AP=2t,CQ=3t,AQ=16-3t.于是=,解得,t=(2)当△APQ∽△ACB时,,设用t秒时,以A、P、Q为顶点的三角形与△ABC相似.则AP=2t,CQ=3t,AQ=16-3t.于是,解得t=1.故答案为t=或t=1.【点睛】此题考查了相似三角形的判定和性质,根据题意将对应边转换,得到两组相似三角形是解题的关键.15、1:1【分析】根据相似三角形的性质进行分析即可得到答案.【详解】解:∵两个相似三角形的面积比为1:4,∴它们对应角的角平分线之比为1:=1:1,故答案为:1:1.【点睛】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(1)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.16、6.2【分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、y=﹣+1【分析】直接根据平移规律作答即可.【详解】解:抛物线y=﹣x2向上平移1个单位长度得到抛物线的解析式为y=﹣x2+1,故答案为:y=﹣x2+1.【点睛】本题考查了函数图像的平移.要求熟练掌握平移的规律:左加右减,上加下减,并用规律求解析式.18、18cm.【分析】由一个三角形的三边之比为3:6:4,可得与它相似的三角形的三边之比为3:6:4,又由与它相似的三角形的周长为39cm,即可求得答案.【详解】解:∵一个三角形的三边之比为3:6:4,∴与它相似的三角形的三边之比为3:6:4,∵与它相似的三角形的周长为39cm,∴与它相似的三角形的最长边为:39×=18(cm).

故答案为:18cm.【点睛】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例.三、解答题(共66分)19、(1)见解析;(2)1或-1【分析】(1)根据因式分解法求出方程的两个解,再证明这两个解不相等即可;(2)根据(1)中的两个解分类讨论即可.【详解】(1)证明:原方程可化为或,∵∴无论为何值,该方程都有两个不相等的实数根.(2)当时,解得:m=1,即方程的另一个根为1;当m=-1时,则另一个根为,∴另一个根为1或-1故答案为:1或-1.【点睛】此题考查的是解一元二次方程和根据一元二次方程的一个根求另一个根,掌握因式分解法解一元二次方程和分类讨论的数学思想是解决此题的关键.20、详见解析.【分析】连接MA并延长,连接NC并延长,两延长线相交于一点O,点O是路灯所在的点,再连接OE,并延长OE交地面于点G,FG即为所求.【详解】如图所示,FG即为所求.【点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影;中心投影的光线特点是从一点出发的投射线.21、【解析】x²-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)²-4×1×(-7)=44>0,∴x=,∴.22、(1)见解析;(2)①,②(﹣5,2).【分析】(1)利用网格特点和旋转的性质画出A、C的对应点A′、C′,然后顺次连接即可;(2)①先利用勾股定理计算出BC的长,然后利用弧长公式计算;②利用(1)中所画图形写出点A′的坐标.【详解】解:(1)如图,△A′BC′为所作;(2)①BC=,故点C经过的路径弧的长==π;②点A′的坐标为(﹣5,2).故答案为:π,(﹣5,2).【点睛】本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形,也考查了弧长公式的应用.23、(1)①2;②;(2)或;(3)点E运动形成的图形与正方形PQMN的“近距离”为.【分析】(1)①由垂线段最短,即可得到答案;②根据题意,找出正方形PQMN与△ABC的边界的“近距离”为1,的临界点,然后分别求出m的最小值和最大值,即可得到m的取值范围;(2)根据题意,抛物线与△ABC的“近距离”为1时,可分为两种情况:当点C到抛物线的距离为1,即CD=1;当抛物线与线段AB的距离为1时,即GH=1;分别求出a的值,即可得到答案;(3)根据题意,取AB的中点F,连接EF,求出EF的长度,然后根据题意,求出点F,点Q的坐标,求出FQ的长度,即可得到EQ的长度,即可得到答案.【详解】解:(1)①∵B(9,2),C(,2),∴点B、C的纵坐标相同,∴线段BC∥x轴,∴原点O到线段BC的最短距离为2;即原点O与线段BC的“近距离”为2;故答案为:2;②∵A(-1,-8),B(9,2),C(-1,2),∴线段BC∥x轴,线段AC∥y轴,∴AC=BC=10,△ABC是等腰直角三角形,当点N与点O重合时,点N与线段AC的最短距离为1,则正方形PQMN与△ABC的边界的“近距离”为1,此时m为最小值,∵正方形的边长为,由勾股定理,得:,∴,(舍去);当点Q到线段AB的距离为1时,此时m为最大值,如图:∵QN=1,△QMN是等腰直角三角形,∴QM=,∵BD=9,△BDE是等腰直角三角形,∴DE=9,∵△OEM是等腰直角三角形,∴OE=OM=7,∴m的最大值为:,∴m的取值范围为:;故答案为:;(2)抛物线C:,且,若抛物线C与△ABC的“近距离”为1,由题可知,点C与抛物线的距离为1时,如图:∵点C的坐标为(,2),∴但D的坐标为(,3),把点D代入中,有,解得:;当线段AB与抛物线的距离为1时,近距离为1,如图:即GH=1,点H在抛物线上,过点H作AB的平行线,线段AB与y轴相交于点F,作FE⊥EH,垂足为E,∴EF=GH=1,∵∠FDE=∠A=45°,∴,∵点A(-1,-8),B(9,2),设直线AB为,∴,解得:,∴直线AB的解析式为:,∴直线EH的解析式为:;∴联合与,得,整理得:,∵直线EH与抛物线有一个交点,∴,解得:;综合上述,a的值为:或;(3)由题意,取AB的中点F,连接EF,如图:∵点A(-1,-8),B(9,2),∴,在中,F是AD的中点,点E是的中点,∴,∵点D的坐标为(5,-2),A(-1,-8),∴点F的坐标为(2,),∵在正方形PNMQ中,中心点的坐标为(5,),∴点Q的坐标为(6,),∴,∴;∴点E运动形成的图形与正方形PQMN的“近距离”为.【点睛】本题考查了图形的运动问题和最短路径问题,考查了二次函数的性质,正方形的性质,等腰直角三角形的性质,一次函数的平移,勾股定理,旋转的性质,根的判别式等知识,解题的关键是熟练掌握所学的知识,正确作出辅助线,作出临界点的图形,从而进行分析.注意运用数形结合的思想和分类讨论的思想进行解题.难度很大,是中考压轴题.24、1+、1-【详解】X=1+或者x=1-25、(1);(-2,);(1,0);(2)N点的坐标为(0,),(0,);(3)E(-1,-)、F(0,)或E(-1,),F(-4,)【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可【详解】(1)∵,a=,则抛物线的“衍生直线”的解析式为;联立两解析式求交点,解得或,∴A(-2,),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在中,令y=0可求得x=-3或x=1,∴C(-3,0),且A(-2,),∴AC=由翻折的性质可知AN=AC=,∵△AMN为该抛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论