版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.82.方程的根是()A.5和 B.2和 C.8和 D.3和3.在中,,则的长为()A. B. C. D.4.如图是抛物线的部分图象,其顶点坐标是,给出下列结论:①;②;③;④;⑤.其中正确结论的个数是()A.2 B.3 C.4 D.55.如图,将绕点按逆时针方向旋转后得到,若,则的度数为()A. B. C. D.6.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟7.如图,等腰与等腰是以点为位似中心的位似图形,位似比为,则点的坐标是()A. B. C. D.8.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.69.抛物线y=2(x-1)2-6的对称轴是().A.x=-6 B.x=-1 C.x= D.x=110.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为()A.7 B.14 C.6 D.15二、填空题(每小题3分,共24分)11.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为2.4km,则M,C两点间的距离为______km.12.一元二次方程x2﹣16=0的解是_____.13.如图,AB是⊙O的直径,且AB=6,弦CD⊥AB交AB于点P,直线AC,DB交于点E,若AC:CE=1:2,则OP=_____.14.如图,是锐角的外接圆,是的切线,切点为,,连结交于,的平分线交于,连结.下列结论:①平分;②连接,点为的外心;③;④若点,分别是和上的动点,则的最小值是.其中一定正确的是__________(把你认为正确结论的序号都填上).15.如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.16.在一个不透明的布袋中装有红色和白色两种颜色的小球(除颜色以外没有任何区别),随机摸出一球,摸到红球的概率是,其中白球6个,则红球有________个.17.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.18.如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是__________.(结果保留根号和)三、解答题(共66分)19.(10分)如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.20.(6分)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,(1)求B到C的距离;(2)如果在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由(≈1.732).21.(6分)计算:(1)2sin30°+cos45°tan60°(2)()0()-2tan230.22.(8分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路线为弧BD求图中阴影部分的面积.23.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.24.(8分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.25.(10分)在菱形中,,延长至点,延长至点,使,连结,,延长交于点.(1)求证:;(2)求的度数.26.(10分)如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.2、C【分析】利用直接开平方法解方程即可得答案.【详解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故选:C.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.3、C【分析】根据角的正弦值与三角形边的关系结合勾股定理即可求解.【详解】∵在Rt△ABC中,∠C=90°,,,∴,设,则,∵,即,解得:,∴,故选:C.【点睛】本题考查了锐角三角函数的定义以及勾股定理,熟记锐角三角函数的定义是解题的关键.4、C【分析】①根据开口方向,对称轴的位置以及二次函数与y轴的交点的位置即可判断出a,b,c的正负,从而即可判断结论是否正确;②根据对称轴为即可得出结论;③利用顶点的纵坐标即可判断;④利用时的函数值及a,b之间的关系即可判断;⑤利用时的函数值,即可判断结论是否正确.【详解】①∵抛物线开口方向向上,.∵对称轴为,∴.∵抛物线与y轴的交点在y轴的负半轴,∴,∴,故错误;②∵对称轴为,∴,,故正确;③由顶点的纵坐标得,,∴,∴,∴,故正确;④当时,,故正确;⑤当时,,故正确;所以正确的有4个,故选:C.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.5、D【分析】由题意可知旋转角∠BCB′=60°,则根据∠ACB′=∠BCB′+∠ACB即可得出答案.【详解】解:根据旋转的定义可知旋转角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故选:D.【点睛】本题主要考查旋转的定义,解题的关键是找到旋转角,以及旋转后的不变量.6、C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ、CQ即可解决问题.【详解】解:如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=≈80(分钟),故选:C.【点睛】本题考查了解直角三角形的应用,熟练掌握并灵活运用是解题的关键.7、A【分析】根据位似比为,可得,从而得:CE=DE=12,进而求得OC=6,即可求解.【详解】∵等腰与等腰是以点为位似中心的位似图形,位似比为,∴,即:DE=3BC=12,∴CE=DE=12,∴,解得:OC=6,∴OE=6+12=18,∴点的坐标是:.故选A.【点睛】本题主要考查位似图形的性质,掌握位似图形的位似比等于相似比,是解题的关键.8、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.9、D【解析】根据抛物线的顶点式,直接得出结论即可.【详解】解:∵抛物线y=2(x-1)2-6,
∴抛物线的对称轴是x=1.
故选D.【点睛】本题考查了二次函数的性质,要熟悉二次函数的顶点式:y=a(x-h)2+k(a≠0),其顶点坐标为(h,k),对称轴为x=h.10、B【分析】根据“PA⊥PB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQ⊥x轴于点Q,确定OP的最大值即可.【详解】∵PA⊥PB∴∠APB=90°∵点A与点B关于原点O对称,∴AO=BO∴AB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交○M于点,当点P位于位置时,OP取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3,MQ=4,∴OM=5∵∴当点P在的延长线于○M的交点上时,OP取最大值,∴OP的最大值为3+2×2=7∴AB的最大值为7×2=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.二、填空题(每小题3分,共24分)11、1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=12AB=1.1km【详解】∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=12故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.12、x1=﹣1,x2=1【分析】直接运用直接开平方法进行求解即可.【详解】解:方程变形得:x2=16,开方得:x=±1,解得:x1=﹣1,x2=1.故答案为:x1=﹣1,x2=1【点睛】本题考查了一元二次方程的解法,掌握直接开平方法是解答本题的关键.13、1.【分析】过点E作EF⊥AB于点F,证明△ACP∽△AEF以及△PBD∽△FBE,设PB=x,然后利用相似三角形的性质即可求出答案.【详解】过点E作EF⊥AB于点F,∵CP⊥AB,AC:CE=1:2,∴CP∥EF,AC:AE=1:3,∴△ACP∽△AEF,∴,∵PD∥EF,∴△PBD∽△FBE,∴,∵PC=PD,∴,设PB=x,BF=3x,∴AP=6﹣x,AF=6+3x,∴,解得:x=2,∴PB=2,∴OP=1,故答案为:1.【点睛】本题考查了圆中的计算问题,熟练掌握垂径定理,相似三角形的判定与性质是解题的关键.14、【分析】如图1,连接,通过切线的性质证,进而由,即可由垂径定理得到F是的中点,根据圆周角定理可得,可得平分;由三角形的外角性质和同弧所对的圆周角相等可得,可得,可得点为得外心;如图,过点C作交的延长线与点通过证明,可得;如图,作点关于的对称点,当点在线段上,且时,.【详解】如图,连接,∵是的切线,∴,∵∴,且为半径∴垂直平分∴∴∴平分,故正确点的外心,故正确;如图,过点C作交的延长线与点,故正确;如图,作点关于的对称点,点与点关于对称,当点在线段上,且时,,且∴的最小值为;故正确.故答案为:.【点睛】本题是相似综合题,考查了圆的相关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.15、40°或70°或100°.【分析】根据旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.先连结AP,如图,由旋转的性质得OP=OB,则可判断点P、C在以AB为直径的圆上,利用圆周角定理得∠BAP=∠BOP=α,∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,然后分类讨论:当AP=AC时,∠APC=∠ACP,即90°﹣α=70°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,;当CP=CA时,∠CAP=∠CAP,即α+20°=70°,再分别解关于α的方程即可.【详解】连结AP,如图,∵点O是AB的中点,∴OA=OB,∵OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,∴OP=OB,∴点P在以AB为直径的圆上,∴∠BAP=∠BOP=α,∠APC=∠ABC=70°,∵∠ACB=90°,∴点P、C在以AB为直径的圆上,∴∠ACP=∠ABP=90°﹣α,∠APC=∠ABC=70°,当AP=AC时,∠APC=∠ACP,即90°﹣α=70°,解得α=40°;当PA=PC时,∠PAC=∠ACP,即α+20°=90°﹣α,解得α=70°;当CP=CA时,∠CAP=∠CPA,即α+20°=70°,解得α=100°,综上所述,α的值为40°或70°或100°.故答案为40°或70°或100°.考点:旋转的性质.16、1【分析】设红球有x个,根据题意列出方程,解方程并检验即可.【详解】解:设红球有x个,由题意得:,解得,经检验,是原分式方程的解,所以,红球有1个,故答案为:1.【点睛】本题主要考查根据概率求数量,掌握概率的求法是解题的关键.17、【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.18、【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出∠AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和∠EOF,最后利用S阴影=S梯形AFCD-S△AOE-S扇形EOF计算即可.【详解】解:设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OG⊥AE∵四边形ABCD是正方形∴∠ABF=90°,AD∥BC,BC=CD=AD=cm∴AF为圆的直径∵,圆的半径为2,∴AF=4cm在Rt△ABF中sin∠AFB=,BF=∴∠AFB=60°,FC=BC-BF=∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt△AOG中,OG=sin∠EAF·AO=,AG=cos∠EAF·AO=1cm根据垂径定理,AE=2AG=2cm∴S阴影=S梯形AFCD-S△AOE-S扇形EOF===故答案为:.【点睛】此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.三、解答题(共66分)19、(1)见解析;(2)AC的长为4;(3)AC=BC+EC,理由见解析【分析】(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2)由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;(3)在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.【详解】(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴,即,∴AC=4,即AC的长为4;(3)解:AC=BC+EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB=∠AEB=90°,∵∠DAB=45°,∴△AEB为等腰直角三角形,∴∠EAB=∠EBA=∠ECA=45°,AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(SAS),∴EF=CE,∠AFE=∠BCE=∠ACB+∠ECA=90°+45°=135°,∴∠EFC=180°﹣∠AFE=180°﹣135°=45°,∴∠EFC=∠ECF=45°,∴△EFC为等腰直角三角形.∴CF=EC,∴AC=AF+CF=BC+EC.【点睛】本题考查圆与三角形的结合,关键在于牢记基础性质,利用三角形的相似对应边以及三角形的全等进行计算.20、(1)12海里;(2)该货船无触礁危险,理由见解析【分析】(1)证出∠BAC=∠ACB,得出BC=AB=24×=12即可;(2)过点C作CD⊥AD于点D,分别在Rt△CBD、Rt△CAD中解直角三角形,可先求得BD的长,然后得出CD的长,从而再将CD与9比较,若大于9则无危险,否则有危险.【详解】解:(1)由题意得:∠BAC=90°﹣10°=30°,∠MBC=90°﹣30°=10°,∵∠MBC=∠BAC+∠ACB,∴∠ACB=∠MBC﹣∠BAC=30°,∴∠BAC=∠ACB,∴BC=AB=24×=12(海里);(2)该货船无触礁危险,理由如下:过点C作CD⊥AD于点D,如图所示:∵∠EAC=10°,∠FBC=30°,∴∠CAB=30°,∠CBD=10°.∴在Rt△CBD中,CD=BD,BC=2BD,由(1)知BC=AB,∴AB=2BD.在Rt△CAD中,AD=CD=3BD=AB+BD=12+BD,∴BD=1.∴CD=1.∵1>9,∴货船继续向正东方向行驶无触礁危险.【点睛】本题考查解直角三角形的应用-方向角问题、等腰三角形的判定与性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.21、(1)-2(2)【分析】(1)根据特殊角的三角函数值即可求解;(2)根据负指数幂、零指数幂及特殊角的三角函数值即可求解.【详解】(1)2sin30°+cos45°tan60°=2×+-×=1+-3=-2(2)()0()-2tan230=1-4+()2=-3+=.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值.22、π.【分析】根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.【详解】∵将△ABC绕点A逆时针旋转30°后得到△ADE,∴根据旋转可知:∠DAB=30°,△AED≌△ACB,∴S△AED=S△ACB,∴图中阴影部分的面积S=S扇形DAB+S△AED﹣S△ACB=S扇形DABπ.【点睛】本题考查的是扇形面积的计算、旋转的性质,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.23、(1)y=﹣x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).【解析】试题分析:(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,﹣x2+4x+5),建立函数关系式S四边形APCD=﹣2x2+10x,根据二次函数求出极值;(3)先判断出△HMN≌△AOE,求出M点的横坐标,从而求出点M,N的坐标.试题解析:(1)设抛物线解析式为y=a+9,∵抛物线与y轴交于点A(0,5),∴4a+9=5,∴a=﹣1,y=﹣+9=-+4x+5,(2)当y=0时,-+4x+5=0,∴x1=﹣1,x2=5,∴E(﹣1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=﹣1,n=5,∴直线AB的解析式为y=﹣x+5;设P(x,﹣+4x+5),∴D(x,﹣x+5),∴PD=-+4x+5+x﹣5=-+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(-+5x)=-2+10x,∴当x=时,∴S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,∵MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1,∴M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(﹣1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+0E2=26∵MN=AE∴MN2=AE2,∴MN2=(2﹣1)2+[8﹣(10+b)]2=1+(b+2)2∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴1+(b+2)2=26,∴b=3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论