版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知反比例函数,下列结论;①图象必经过点;②图象分布在第二,四象限;③在每一个象限内,y随x的增大而增大.其中正确的结论有()个.A.3 B.2 C.1 D.02.下列事件是必然事件的()A.抛掷一枚硬币,四次中有两次正面朝上B.打开电视体育频道,正在播放NBA球赛C.射击运动员射击一次,命中十环D.若a是实数,则|a|≥03.两三角形的相似比是2:3,则其面积之比是()A.: B.2:3 C.4:9 D.8:274.如图相交于点,下列比例式错误的是()A. B. C. D.5.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A. B. C. D.6.在平面直角坐标系中,将关于轴的对称点绕原点逆时针旋转得到,则点的坐标是()A. B. C. D.7.已知反比例函数y=的图象如图所示,则二次函数y=k2x2+x﹣2k的图象大致为()A. B.C. D.8.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是()A.m≠2 B.m=2 C.m≥2 D.m≠09.掷一枚质地均匀的硬币10次,下列说法正确的是()A.必有5次正面朝上 B.可能有5次正面朝上C.掷2次必有1次正面朝上 D.不可能10次正面朝上10.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=2二、填空题(每小题3分,共24分)11.已知圆锥的底面半径为2cm,侧面积为10πcm2,则该圆锥的母线长为_____cm.12.在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_____.13.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程有解的概率是__________。14.已知为锐角,且,则度数等于______度.15.若二次函数(为常数)的最大值为3,则的值为________.16.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.17.点(﹣4,3)关于原点对称的点的坐标是_____.18.抛物线y=ax2-4ax+4(a≠0)与y轴交于点A.过点B(0,3)作y轴的垂线l,若抛物线y=ax2-4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且│m│<1,则a的取值范围是______.三、解答题(共66分)19.(10分)已知:如图,在半圆中,直径的长为6,点是半圆上一点,过圆心作的垂线交线段的延长线于点,交弦于点.(1)求证:;(2)记,,求关于的函数表达式;(3)若,求图中阴影部分的面积.20.(6分)如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.(1)求证:四边形AECF是矩形;(2)连接OE,若AE=4,AD=5,求OE的长.21.(6分)如图,在四边形OABC中,BC∥AO,∠AOC=90°,点A(5,0),B(2,6),点D为AB上一点,且,双曲线y1=(k1>0)在第一象限的图象经过点D,交BC于点E.(1)求双曲线的解析式;(2)一次函数y2=k2x+b经过D、E两点,结合图象,写出不等式<k2x+b的解集.22.(8分)如图,直线与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A,B两点.(1)求抛物线的解析式.(2)点P是第一象限抛物线上的一点,连接PA,PB,PO,若△POA的面积是△POB面积的倍.①求点P的坐标;②点Q为抛物线对称轴上一点,请求出QP+QA的最小值.23.(8分)阅读理解,我们已经学习了点和圆、直线和圆的位置关系以及各种位置关系的数量表示,如下表:类似于研究点和圆、直线和圆的位置关系,我们也可以用两圆的半径和两圆的圆心距(两圆圆心的距离)来刻画两圆的位置关系.如果两圆的半径分别为和(r1>r2),圆心距为d,请你通过画图,并利用d与和之间的数量关系探索两圆的位置关系.图形表示(圆和圆的位置关系)数量表示(圆心距d与两圆的半径、的数量关系)24.(8分)如图,一根竖直的木杆在离地面3.1处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:)25.(10分)如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.(1)求k的值;(2)点C在AB上,若OC=AC,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.26.(10分)综合与探究:三角形旋转中的数学问题.实验与操作:
Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y随x的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数(k是常数,k≠0)的图像是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y随x的增大而减小;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y随x的增大而增大.2、D.【解析】试题解析:A、是随机事件,不符合题意;B、是随机事件,不符合题意;==C、是随机事件,不符合题意;D、是必然事件,符合题意.故选D.考点:随机事件.3、C【解析】根据相似三角形的面积比等于相似比的平方计算即可.【详解】∵两三角形的相似比是2:3,∴其面积之比是4:9,故选C.【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的面积比等于相似比的平方是解题的关键.4、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【详解】解:∵,∴,,故A、B正确;∴△CDG∽△FEG,∴,故C正确;不能得到,故D错误;故选:D.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理.5、B【分析】设扇形的半径为r.利用弧长公式构建方程求出r,再利用扇形的面积公式计算即可.【详解】解:设扇形的半径为r.由题意:=6π,∴r=9,∴S扇形==27π,故选B.【点睛】本题考查扇形的弧长公式,面积公式等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.6、C【分析】先求出点B的坐标,再根据旋转图形的性质求得点的坐标【详解】由题意,关于轴的对称点的坐标为(-1,-4),如图所示,点绕原点逆时针旋转得到,过点B’作x轴的垂线,垂足为点C则OC=4,B’C=1,所以点B’的坐标为故答案选:C.【点睛】本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.7、A【分析】先根据已知图象确定反比例函数的系数k的正负,然后再依次确定二次函数的开口方向、对称轴、与y轴的交点坐标确定出合适图象即可.【详解】解:∵反比例函数图象位于第一三象限,∴k>0,∴k2>0,﹣2k<0,∴抛物线与y轴的交点(0,-2k)在y轴负半轴,∵k2>0,∴二次函数图象开口向上,∵对称轴为直线x=<0,∴对称轴在y轴左边,纵观各选项,只有A选项符合.故选:A.【点睛】本题考查了二次函数和反比例函数的图象特征,根据反比例函数图象确定k的正负、熟知二次函数的性质是解题的关键.8、A【解析】解:∵关于x的方程(m﹣1)x1+mx﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故选A.9、B【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】解:掷一枚质地均匀的硬币10次,不一定有5次正面朝上,选项A不正确;可能有5次正面朝上,选项B正确;掷2次不一定有1次正面朝上,可能两次都反面朝上,选项C不正确.可能10次正面朝上,选项D不正确.故选:B.【点睛】本题考查的是随机事件,掌握随机事件的概念是解题的关键,随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【解析】试题解析:x(x+1)=0,
⇒x=0或x+1=0,
解得x1=0,x1=-1.
故选C.二、填空题(每小题3分,共24分)11、5【解析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.【详解】设圆锥的母线长为Rcm,圆锥的底面周长=2π×2=4π,则×4π×R=10π,解得,R=5(cm)故答案为5【点睛】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12、或【解析】利用位似图形的性质可得对应点坐标乘以和-即可求解.【详解】解:以点为位似中心,相似比为,把缩小,点的坐标是则点的对应点的坐标为或,即或,故答案为:或.【点睛】本题考查的是位似图形,熟练掌握位似变换是解题的关键.13、【分析】画树状图展示所有36种等可能的结果数,再找出使,即的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中使,即的有19种,
方程有解的概率是,故答案为:.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件的结果数目m,然后根据概率公式求出事件的概率.14、30【分析】根据锐角三角函数值即可得出角度.【详解】∵,为锐角∴=30°故答案为30.【点睛】此题主要考查根据锐角三角函数值求角度,熟练掌握,即可解题.15、-1【分析】根据二次函数的最大值公式列出方程计算即可得解.【详解】由题意得,,
整理得,,
解得:,
∵二次函数有最大值,
∴,
∴.
故答案为:.【点睛】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.16、1.【详解】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,AB===13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),故答案为1.考点:旋转的性质.17、(4,﹣3)【解析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.【详解】点(﹣4,3)关于原点对称的点的坐标是(4,﹣3).故答案为(4,﹣3).【点睛】本题考查了平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数,比较简单.18、a>或a<.【分析】先确定抛物线的对称轴,根据开口的大小与a的关系,即开口向上时,a>0,且a越大开口越小,开口向下时,a<0,且a越大,开口越大,从而确定a的范围.【详解】解:如图,观察图形抛物线y=ax2-4ax+4的对称轴为直线,设抛物线与直线l交点(靠近y轴)为(m,3),∵│m│<1,∴-1<m<1.当a>0时,若抛物线经过点(1,3)时,开口最大,此时a值最小,将点(1,3)代入y=ax2-4ax+4,得,3=a-4a+4解得a=,∴a>;当a<0时,若抛物线经过点(-1,3)时,开口最大,此时a值最大,将点(-1,3)代入y=ax2-4ax+4,得,3=a+4a+4解得a=,∴a<.a的取值范围是a>或a<.故答案为:a>或a<.【点睛】本题考查抛物线的性质,首先明确a值与开口的大小关系,观察图形,即数形结合的思想是解答此题的关键.三、解答题(共66分)19、(1)见解析;(2);(3)【分析】(1)根据直径所对的圆周角等于90°,可得∠CAB+∠ABC=90°,根据DO⊥AB,得出∠D+∠DAO=90°,进而可得出结果;(2)先证明,得出,从而可得出结果;(3)设OD与圆弧的交点为F,则根据S阴影=S△AOD-S△AOC-S扇形COF求解.【详解】(1)证明:∵是直径,∴,∴.∵,∴.∴.(2)解:∵,∴.∴.而,∴,∴即,∴.(3)解:设OD与圆弧的交点为F,设,则,∵,∴.在中,,∴.∴∠AOC=60°,∴DO=AO=3.又AO=CO,∴△ACO为等边三角形,S阴影=S△AOD-S扇形COF-S△AOC=.【点睛】本题主要考查圆周角定理的推论、圆中不规则图形面积的求法、等腰三角形的性质、等边三角形的性质与判定等知识,掌握基本性质与判定方法是解题的关键.注意求不规则图形的面积时,结合割补法求解.20、(1)见解析;(2)OE=25【解析】(1)根据菱形的性质得到AD∥BC,推出四边形AECF是平行四边形,根据矩形的判定定理即可得到结论;(2)根据勾股定理得到BE=1,AC=45【详解】(1)证明:∵菱形ABCD,∴AD∥BC.∵CF∥AE,∴四边形AECF是平行四边形.∵AE⊥BC,∴平行四边形AECF是矩形.(2)解:∵AE=4,AD=5,∴AB=5,BE=1.∵AB=BC=5,∴CE=2.∴AC=45∵对角线AC,BD交于点O,∴AO=CO=25∴OE=25【点睛】本题考查了矩形的判定和性质,菱形的性质,勾股定理解直角三角形,正确的识别图形是解题的关键.21、(1);(2)<x<1.【分析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=1,得到D点坐标为(1,2),然后把D点坐标代入反比例函数表达式中,求出k的值即可得到反比例函数解析式;(2)观察函数图象即可求解.【详解】解:(1)过点B作BM⊥x轴于M,过点D作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN∥BM,∴△ADN∽△ABM,∴,即,解得:DN=2,AN=1,∴ON=OA﹣AN=1,∴D点坐标为(1,2),把D(1,2)代入y1=得,k=2×1=8,∴反比例函数解析式为;(2)由(1)知,点D的坐标为(1,2);对于,当y=6时,即6=,解得x=,故点E(,6);从函数图象看,<k2x+b时,x的取值范围为<x<1,故不等式<k2x+b的解集为<x<1.【点睛】本题主要考查反比例函数与一次函数的关系及相似三角形的判定与性质,关键是根据题意及相似三角形的性质与判定得到反比例函数的解析式,然后利用反比例函数与一次函数的关系进行求解即可.22、(1);(2)①点P的坐标为(,1);②【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;
(2)设出点P的坐标,①用△POA的面积是△POB面积的倍,建立方程求解即可;②利用对称性找到最小线段,用两点间距离公式求解即可.【详解】解:(1)在中,令x=0,得y=1;令y=0,得x=2,∴A(2,0),,B(0,1).∵抛物线经过A、B两点,∴解得∴抛物线的解析式为.(2)①设点P的坐标为(,),过点P分别作x轴、y轴的垂线,垂足分别为D、E.∴∵∴∴,∵点P在第一象限,所以∴点P的坐标为(,1)②设抛物线与x轴的另一交点为C,则点C的坐标为(,)连接PC交对称轴一点,即Q点,则PC的长就是QP+QA的最小值,所以QP+QA的最小值就是.【点睛】此题是二次函数综合题,主要考查了待定系数法,三角形的面积,对称性,解本题的关键是求抛物线解析式.23、见解析【分析】两圆的位置关系可以从两圆公共点的个数来考虑.两圆无公共点(即公共点的个数为0个),1个公共点,2个公共点,或者通过平移实验直观的探索两圆的相对位置,最后得出答案.初中阶段不考虑重合的情况;【详解】解:如图,连接,设的半径为,的半径为圆和圆的位置关系(图形表示)数量表示(圆心距d与两圆的半径r1、r2的数量关系)【点睛】本题考查两圆的五种位置关系.经历探索两个圆之间位置关系的过程,训练学生的探索能力;通过平移实验直观的探索两个圆之间位置关系,发展学生的识图能力和动手操作能力.从“形”到“数”和从“数”到“形”的转化是理解本题的关键.24、8.1m【分析】由题意得,在直角三角形中,知道了两直角边,运用勾股定理即可求出斜边,从而得出这棵树折断之前的高度.【详解】解:如图:,∴,∴木杆折断之前高度故答案为m【点睛】本题考查勾股定理的应用,熟练掌握运算法则是解题关键.25、(1)32;(2)5;(3)D(10,0)或(,0).【分析】(1)先把A(4,n)代入y=2x,求出n的值,再把A(4,8)代入y=求出k的值即可;(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,即可求出x的值;(3)设点D的坐标为(x,0),分两种情况:①当x>4时,②当0<x<4时,根据三角形的面积公式列式求解即可.【详解】解(1)∵直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(4,n),∴n=2×4=8,∴A(4,8),∴k=4×8=32,∴反比例函数为y=.(2)设AC=x,则OC=x,BC=8﹣x,由勾股定理得:OC2=OB2+BC2,∴x2=42+(8﹣x)2,x=5,∴AC=5;(3)设点D的坐标为(x,0)分两种情况:①当x>4时,如图1,∵S△OCD=S△ACD,∴OD•BC=AC•BD,3x=5(x﹣4),x=10,②当0<x<4时,如图2,同理得:3x=5(4﹣x),x=,∴点D的坐标为(10,0)或(,0).【点睛】本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年贵州省安顺市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 2024年江西省萍乡市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年河南省南阳市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2021年辽宁省锦州市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2023年江苏省无锡市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2022年江西省上饶市公开招聘警务辅助人员辅警笔试自考题1卷含答案
- 2024年办公商业空间设计项目资金需求报告代可行性研究报告
- 行政文员笔试题库及答案
- 2024指定工程人力劳务输出协议版B版
- 2024版常年税务顾问合同:为企业提供全面税务规划与咨询服务的合作协议
- 《古兰》中文译文版
- VIC模型PPT课件
- AQL2.5抽检标准
- 宣传广告彩页制作合同
- 除湿机说明书
- 征信知识测试题及答案
- 理想系列一体化速印机故障代码
- 现代电路技术——故障检测D算法
- 检验科各专业组上岗轮岗培训考核制度全6页
- 钣金与成型 其它典型成形
- 工程停止点检查管理(共17页)
评论
0/150
提交评论