2022-2023学年江苏省扬州市数学九上期末经典试题含解析_第1页
2022-2023学年江苏省扬州市数学九上期末经典试题含解析_第2页
2022-2023学年江苏省扬州市数学九上期末经典试题含解析_第3页
2022-2023学年江苏省扬州市数学九上期末经典试题含解析_第4页
2022-2023学年江苏省扬州市数学九上期末经典试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知⊙O的半径是4,圆心O到直线l的距离d=1.则直线l与⊙O的位置关系是()A.相离 B.相切 C.相交 D.无法判断2.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是()A. B.C. D.3.一个不透明的盒子装有个除颜色外完全相同的球,其中有4个白球.每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过如此大量重复试验,发现摸到白球的频率稳定在0.2左右,则的值约为()A.8 B.10 C.20 D.404.反比例函数图象上的两点为,且,则下列表达式成立的是()A. B. C. D.不能确定5.x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则2a﹣4b的值为()A.﹣2 B.﹣1 C.1 D.26.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.7.如图,在平行四边形中,为的中点,为上一点,交于点,,则的长为()A. B. C. D.8.如图所示,在中,,若,,则的值为()A. B. C. D.9.小明使用电脑软件探究函数的图象,他输入了一组,的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的,的值满足()A., B., C., D.,10.下列调查方式合适的是()A.对空间实验室“天空二号”零部件的检查,采用抽样调查的方式B.了解炮弹的杀伤力,采用全面调查的方式C.对中央台“新闻联播”收视率的调查,采用全面调查的方式D.对石家庄市食品合格情况的调查,采用抽样调查的方式二、填空题(每小题3分,共24分)11.如图,中,A,B两个顶点在轴的上方,点C的坐标是(−1,0).以点C为位似中心,在轴的下方作的位似图形,并把的边长放大到原来的2倍,记所得的像是.设点A的横坐标是,则点A对应的点的横坐标是_________.12.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段的长为________.13.函数中,自变量的取值范围是________.14.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.15.如图,在与中,,要使与相似,还需添加一个条件,这个条件可以是____________(只需填一个条件)16.在△ABC中,∠B=45°,cosA=,则∠C的度数是_____.17.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD.若AC=2,则cosD=________.18.分解因式:x3-4x2三、解答题(共66分)19.(10分)(1)计算:(2)已知,求的值20.(6分)如图,在与中,,且.求证:.21.(6分)定义:无论函数解析式中自变量的字母系数取何值,函数的图象都会过某一个点,这个点称为定点.例如,在函数中,当时,无论取何值,函数值,所以这个函数的图象过定点.求解体验(1)①关于的一次函数的图象过定点_________.②关于的二次函数的图象过定点_________和_________.知识应用(2)若过原点的两条直线、分别与二次函数交于点和点且,试求直线所过的定点.拓展应用(3)若直线与拋物线交于、两点,试在拋物线上找一定点,使,求点的坐标.22.(8分)如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=1.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.23.(8分)某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.24.(8分)如图,在中,,是的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与交于点F,延长BA到点G,使得,连接FG.备用图(1)求证:FG是的切线;(2)若的半径为4.①当,求AD的长度;②当是直角三角形时,求的面积.25.(10分)黄山景区销售一种旅游纪念品,已知每件进价为元,当销售单价定为元时,每天可以销售件.市场调查反映:销售单价每提高元,日销量将会减少件.物价部门规定:销售单价不低于元,但不能超过元,设该纪念品的销售单价为(元),日销量为(件).(1)直接写出与的函数关系式.(2)求日销售利润(元)与销售单价(元)的函数关系式.并求当为何值时,日销售利润最大,最大利润是多少?26.(10分)已知抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0),且与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是y轴正半轴上的一个动点,连结DP,将线段DP绕着点D顺时针旋转90°得到线段DE,点P的对应点E恰好落在抛物线上,求出此时点P的坐标;(3)点M(m,n)是抛物线上的一个动点,连接MD,把MD2表示成自变量n的函数,并求出MD2取得最小值时点M的坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=1,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..2、D【解析】画树状图展示所有16种等可能的结果数,找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率.故选D.【点睛】本题考查了列表法与树状图法.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.3、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,=0.2,解得,m=20,经检验m=20是所列方程的根且符合实际意义,故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.4、D【分析】根据反比例函数图象上点的坐标特征得到,,然后分类讨论:0<<得到;当<0<得到<;当<<0得到.【详解】∵反比例函数图象上的两点为,,∴,∴,,当0<<,;当<0<,<;当<<0,;故选D.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.5、A【分析】先把x=1代入方程x2+ax-2b=0得a-2b=-1,然后利用整体代入的方法计算2a-4b的值即可.【详解】将x=1代入原方程可得:1+a﹣2b=0,∴a﹣2b=﹣1,∴原式=2(a﹣2b)=﹣2,故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的解就是能够使方程左右两边相等的未知数的值.6、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【点睛】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.7、B【分析】延长,交于,由,,即可得出答案.【详解】如图所示,延长CB交FG与点H∵四边形ABCD为平行四边形∴BC=AD=DF+AF=6cm,BC∥AD∴∠FAE=∠HBE又∵E是AB的中点∴AE=BE在△AEF和△BEH中∴△AEF≌△BEH(ASA)∴BH=AF=2cm∴CH=8cm∵BC∥CD∴∠FAG=∠HCG又∠FGA=∠CGH∴△AGF∽△CGH∴∴CG=4AG=12cm∴AC=AG+CG=15cm故答案选择B.【点睛】本题考查了全等三角形的判定以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解决本题的关键.8、B【分析】由DE∥BC,可得△ADE∽△ABC,推出,即可得出结论.【详解】∵AD=3,DB=4,∴AB=3+4=1.∵DE∥BC,∴△ADE∽△ABC,∴.故选:B.【点睛】本题考查了相似三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9、D【分析】由图象可知,当x>0时,y<0,可知a<0;图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,则b<0;【详解】由图象可知,当x>0时,y<0,∴a<0;∵图象的左侧可以看作是反比例函数图象平移得到,由图可知向左平移,∴b<0;故选:D.【点睛】本题考查函数的图象;能够通过已学的反比例函数图象确定b的取值是解题的关键.10、D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:对空间实验室“天空二号”零部件的检查,采用全面调查的方式,A错误;了解炮弹的杀伤力,采用抽样调查的方式,B错误;对中央台“新闻联播”收视率的调查,采用抽样调查的方式,C错误;对石家庄市食品合格情况的调查,采用抽样调查的方式,D正确,故选:D.【点睛】本题考查全面调查与抽样调查,理解全面调查与抽样调查的特点是本题的解题关键.二、填空题(每小题3分,共24分)11、【分析】△A′B′C的边长是△ABC的边长的2倍,过A点和A′点作x轴的垂线,垂足分别是D和E,因为点A的横坐标是a,则DC=-1-a.可求EC=-2-2a,则OE=CE-CO=-2-2a-1=-3-2a【详解】解:如图,过A点和A′点作x轴的垂线,垂足分别是D和E,∵点A的横坐标是a,点C的坐标是(-1,0).

∴DC=-1-a,OC=1

又∵△A′B′C的边长是△ABC的边长的2倍,CE=2CD=-2-2a,OE=CE-OC=2-2a-1=-3-2a故答案为:-3-2a【点睛】本题主要考查了相似的性质,相似于点的坐标相联系,把点的坐标的问题转化为线段的长的问题.12、【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得,即可得AC2=CD•BC=4×8=32,解得AC=4.13、【分析】根据分式有意义的条件是分母不为0;可得关系式x﹣1≠0,求解可得自变量x的取值范围.【详解】根据题意,有x﹣1≠0,解得:x≠1.故答案为:x≠1.【点睛】本题考查了分式有意义的条件.掌握分式有意义的条件是分母不等于0是解答本题的关键.14、【分析】根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.【详解】∵菱形ABCD中,边长为10,∠A=60°,设菱形对角线交于点O,∴,∴,,∴,,顺次连结菱形ABCD各边中点,

∴△AA1D1是等边三角形,四边形A2B2C2D2是菱形,

∴A1D1=AA1=AB=5,C1D1=AC=5,A2B2=C2D2=C2B2=A2D2=AB=5,∴四边形A2B2C2D2的周长是:5×4=20,

同理可得出:A3D3=5×,C3D3=C1D1=5,A5D5=5,C5D5=C3D3=5,∴四边形A2019B2019C2019D2019的周长是:故答案为:【点睛】本题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.15、∠B=∠E【分析】根据两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似可得添加条件:∠B=∠E.【详解】添加条件:∠B=∠E;

∵,∠B=∠E,

∴△ABC∽△AED,

故答案为:∠B=∠E(答案不唯一).【点睛】此题考查相似三角形的判定,解题关键是掌握相似三角形的判定定理.16、75°【解析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根据三角形的内角和定理可得∠C=75°.17、【解析】试题分析:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为.考点:1.圆周角定理;2.解直角三角形.18、x(x-2y)2【分析】首先提取公因式x,然后利用完全平方公式进行分解.【详解】解:原式=x(x2-4xy+4y2)故答案为:x(x-2y)2【点睛】本题考查因式分解,掌握完全平方公式的结构是本题的解题关键.三、解答题(共66分)19、(1)1;(2).【分析】(1)先计算乘方并对平方根化简,最后进行加减运算即可;(2)用含b的代数式表示a,代入式子即可求值.【详解】解:(1)==1(2)已知,可得,代入=.【点睛】本题考查实数的运算以及代入求值,熟练掌握相关计算法则是解题关键.20、见解析【分析】先证得,利用有两条对应边的比相等,且其夹角相等,即可判定两个三角形相似.【详解】∵,∴,即,又,∴.【点睛】本题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两条对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似,熟记各种判定相似三角形的方法是解题关键.21、(1)①;②;(2)直线上的定点为;(3)点为【分析】(1)①由可得y=k(x+3),当x=﹣3时,y=0,故过定点(﹣3,0),即可得出答案.②由,当x=0或x=1时,可得y=2020,即可得出答案.(2)由题意可得,直线AB的函数式,根据相似三角形的判定可得,进而根据相似三角形的性质可得,代入即可得出直线AB的函数式,当x=0时,y=﹣2,进而得出答案.(3)由、可得直线的解析式为,又由直线,可得c+d和cd的值,最后根据相似三角形的性质以及判定,列出方程,即可得出E的坐标.【详解】解:(1)①;②.提示:①,当时,,故过定点.②,当或1时,,故过定点.(2)设直线的解析式为,将点的坐标代入并解得直线的解析式为.如图,分别过点作轴的垂线于点,∴.∵,∴,∴,∴,∴,即,解得,故直线的解析式为.当时,,故直线上的定点为.(3)∵点的坐标分别为,,同(2)可得直线的解析式为,∵,∴.设点,如图,过点作直线轴,过点作直线的垂线与直线分别交于点.同(2)可得,,∴,即,化简得,即,当时,上式恒成立,故定点为.【点睛】本题主要考察二次函数的综合运用,熟练掌握并灵活运用一次函数、相似三角形的判定以及性质是解题的关键.22、(1)y=﹣,y=﹣2x+1(2)S△CDE=140;(3)x≥10,或﹣4≤x<0【分析】(1)根据三角形相似,可求出点坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【详解】(1)由已知,OA=6,OB=1,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=把点A(6,0),B(0,1)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+1(2)当=﹣2x+1时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不低于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图象解不等式.23、解:(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为=134.5;根据方差公式:s2==1.6,∴a=135,b=134.5,c=1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S2一<S2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.24、(1)见解析;(2)①,②当时,;当时,.【分析】(1)连接AF,由圆周角定理的推论可知,根据等腰三角形的性质及圆周角定理的推论可证,,从而可得,然后根据切线的判定方法解答即可;(2)①连接CF,根据“SSS”证明,由全等三角形及等腰三角形的性质可得,进而可证,由平行线分线段成比例定理可证,可求,然后由相交弦定理求解即可;②分两种情况求解即可,(i)当时,(ii)当时.【详解】(1)连接AF,∵BF为的直径,∴,,∴,∵,∴,∵,,∴,∴,即.又∵OF为半径,∴FG是的切线.(2)①连接CF,则,∵AB=AC,OB=OC,OA=OA,∴,∴,∴,∴,∴.∵半径是4,,∴,,∴,即,又由相交弦定理可得:,∴,即,∴(舍负);(2)②∵为直角三角形,不可能等于.∴(i)当时,则,由于,∴,,∴,∴,,∴;(ii)当时,∵,∴是等腰直角三角形,∴,延长AO交BC于点M,∵AB=AC,∴弧AB=弧AC,∴,∴,∴,∴.【点睛】本题考查了圆周角定理的推论,切线的判定,垂径定理,全等三角形的判定与性质,解直角三角形,平行线分线段成比例定理,三角形的面积公式,熟练掌握圆的有关定理以及分类讨论的思想是解答本题的关键.25、(1);(2),x=12时,日销售利润最大,最大利润960元【分析】(1)根据题意得到函数解析式;(2)根据题意得到w=(x-6)(-10x+280)=-10(x-17)2+1210,根据二次函数的性质即可得到结论.【详解】解:(1)根据题意得,,故与的函数关系式为;(2)根据题意得,当时,随的增大而增大,当时,,答:当为时,日销售利润最大,最大利润元.【点睛】此题考查了一元二次方程和二次函数的运用,利用总利润=单个利润×销售数量建立函数关系式,进一步利用性质的解决问题,解答时求出二次函数的解析式是关键.26、(2)y=﹣x2+2x+2;(2)点P的坐标为(0,2+);(2)MD2=n2﹣n+3;点M的坐标为(,)或(,).【分析】(2)根据点A,B的坐标,利用待定系数法即可求出抛物线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论